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Preface 
 
The EPSG Geodetic Parameter Dataset, abbreviated to the EPSG Dataset, is a repository of parameters 
required to: 

• define a coordinate reference system (CRS) which ensures that coordinates describe position 
unambiguously. 

• define transformations and conversions that allow coordinates to be changed from one CRS to 
another CRS. Transformations and conversions are collectively called coordinate operations. 

 
The EPSG Dataset is maintained by the OGP Surveying and Positioning Committee's Geodetic 
Subcommittee. It conforms to ISO 19111 – Spatial referencing by coordinates. It is distributed in three 
ways: 

• the EPSG Registry, in full the EPSG Geodetic Parameter Registry, a web-based delivery platform 
in which the data is held in GML using the CRS entities described in ISO 19136. 

• the EPSG Database, in full the EPSG Geodetic Parameter Database, a relational database structure 
where the entities which form the components of CRSs and coordinate operations are in separate 
tables, distributed as an MS Access database; 

• in a relational data model as SQL scripts which enable a user to create an Oracle, MySQL, 
PostgreSQL or other relational database and populate that database with the EPSG Dataset; 

 
 
OGP Surveying and Positioning Guidance Note 7 is a multi-part document for users of the EPSG Dataset. 
  

• Part 0, Quick Start Guide, gives a basic overview of the Dataset and its use.  
 

• Part 1, Using the Dataset, sets out detailed information about the Dataset and its content, 
maintenance and terms of use.   

 
• Part 2, Formulas, (this document), provides a detailed explanation of formulas necessary for 

executing coordinate conversions and transformations using the coordinate operation methods 
supported in the EPSG dataset. Geodetic parameters in the Dataset are consistent with these 
formulas.  

 
• Part 3, Registry Developer Guide, is primarily intended to assist computer application developers 

who wish to use the API of the Registry to query and retrieve entities and attributes from the dataset. 
 

• Part 4, Database Developer Guide, is primarily intended to assist computer application developers 
who wish to use the Database or its relational data model to query and retrieve entities and attributes 
from the dataset.  

 
The complete text may be found at http://www.epsg.org/guides/index.html. The terms of use of the dataset 
are also available at http://www.epsg.org/CurrentDB.html. 
 
In addition to these documents, the Registry user interface contains online help and the Database user 
interface includes context-sensitive help accessed by left-clicking on any label. 
 
 
This Part 2 of the multipart Guidance Note is primarily intended to assist computer application 
developers in using the coordinate operation methods supported by the EPSG Dataset. It may also be 
useful to other users of the data. 
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A coordinate system is a set of mathematical rules for specifying how coordinates are to be assigned 
to points. It includes the definition of the coordinate axes, the units to be used and the geometry of the 
axes.  The coordinate system is unrelated to the Earth. A coordinate reference system (CRS) is a 
coordinate system related to the Earth through a datum.  Colloquially the term coordinate system has 
historically been used to mean coordinate reference system. 
 
Coordinates may be changed from one coordinate reference system to another through the application 
of a coordinate operation. Two types of coordinate operation may be distinguished: 

• coordinate conversion, where no change of datum is involved and the parameters are chosen 
and thus error free. 

• coordinate transformation, where the target CRS is based on a different datum to the source 
CRS. Transformation parameters are empirically determined and thus subject to measurement 
errors. 

 
A projected coordinate reference system is the result of the application of a map projection to a 
geographic coordinate reference system. A map projection is a type of coordinate conversion. It uses 
an identified method with specific formulas and a set of parameters specific to that coordinate 
conversion method. 
 
Map projection methods are described in section 1 below. Other coordinate conversions and 
transformations are described in section 2. 
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1 Map projections and their coordinate conversion formulas 
 
1.1 Introduction 
 
Setting aside the large number of map projection methods which may be employed for atlas maps, equally 
small scale illustrative exploration maps, and wall maps of the world or continental areas, the EPSG dataset 
provides reference parameter values for orthomorphic or conformal map projections which are used for 
medium or large scale topographic or exploration mapping. Here accurate positions are important and 
sometimes users may wish to scale accurate positions, distances or areas from the maps.  
 
Small scale maps normally assume a spherical earth and the inaccuracies inherent in this assumption are of 
no consequence at the usual scale of these maps. For medium and large scale sheet maps, or maps and 
coordinates held digitally to a high accuracy, it is essential that due regard is paid to the actual shape of the 
Earth. Such coordinate reference systems are therefore invariably based on an ellipsoid and its derived map 
projections. The EPSG dataset and this supporting conversion documentation considers only map projections 
for the ellipsoid.  
 
Though not exhaustive the following list of named map projection methods are those which are most 
frequently encountered for medium and large scale mapping, some of them much less frequently than others 
since they are designed to serve only one particular country. They are grouped according to their possession 
of similar properties, which will be explained later. Except where indicated all are conformal. 
 
Mercator  Cylindrical 
 with one standard parallel  
 with two standard parallels  
   
Cassini-Soldner  (N.B. not conformal) Transverse Cylindrical 
   
Transverse Mercator Group Transverse Cylindrical 
 Transverse Mercator (including south oriented version)  
 Universal Transverse Mercator  
  Gauss-Kruger  
 Gauss-Boaga  
   
Oblique Mercator Group Oblique Cylindrical 
 Hotine Oblique Mercator  
 Oblique Mercator  
 Laborde Oblique Mercator  
   
Lambert Conical Conformal  Conical 
 with one standard parallel  
 with two standard parallels  
   
Stereographic Azimuthal 
 Polar  
 Oblique and equatorial  
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1.2 Map Projection parameters 
  
A map projection grid is related to the geographical graticule of an ellipsoid through the definition of a 
coordinate conversion method and a set of parameters appropriate to that method. Different conversion 
methods may require different parameters. Any one coordinate conversion method may take several different 
sets of associated parameter values, each set related to a particular map projection zone applying to a 
particular country or area of the world. Before setting out the formulas involving these parameters, which 
enable the coordinate conversions for the projection methods listed above, it is as well to understand the 
nature of the parameters. 
 
The plane of the map and the ellipsoid surface may be assumed to have one particular point in common. This 
point is referred to as the natural origin. It is the point from which the values of both the geographic 
coordinates on the ellipsoid and the grid coordinates on the projection are deemed to increment or decrement 
for computational purposes. Alternatively it may be considered as the point which in the absence of 
application of false coordinates has grid coordinates of (0,0). For example, for projected coordinate reference 
systems using the Cassini-Soldner or Transverse Mercator methods, the natural origin is at the intersection of 
a chosen parallel and a chosen meridian (see Figure 2 at end of section). The chosen parallel will frequently 
but not necessarily be the equator. The chosen meridian will usually be central to the mapped area.. For the 
stereographic projection the origin is at the centre of the projection where the plane of the map is imagined to 
be tangential to the ellipsoid.  
 
Since the natural origin may be at or near the centre of the projection and under normal coordinate 
circumstances would thus give rise to negative coordinates over parts of the map, this origin is usually given 
false coordinates which are large enough to avoid this inconvenience. Hence each natural origin will 
normally have False Easting, FE and False Northing, FN values.  For example, the false easting for the 
origins of all Universal Transverse Mercator zones is 500000m. As the UTM origin lies on the equator, areas 
north of the equator do not need and are not given a false northing but for mapping southern hemisphere 
areas the equator origin is given a false northing of 10,000,000m, thus ensuring that no point in the southern 
hemisphere will take a negative northing coordinate. Figure 4 illustrates the UTM arrangements. 
 
These arrangements suggest that if there are false easting and false northing for the real or natural origin, 
there is also a Grid Origin which has coordinates (0,0). In general this point is of no consequence though its 
geographic position may be computed if needed. For example, for the WGS 84 / UTM zone 31N coordinate 
reference system which has a natural origin at 0°N, 3°E where false easting is 500000m E (and false northing 
is 0m N), the grid origin is at 0°N, 1°29'19.478"W. Sometimes however, rather than base the easting and 
northing coordinate reference system on the natural origin by giving it FE and FN values, it may be 
convenient to select a False Origin at a specific meridian/parallel intersection and attribute the false 
coordinates Easting at False Origin, EF and Northing at False Origin, NF to this. The related easting and 
northing of the natural origin may then be computed if required.  
 
The natural origin will always lie on a meridian of longitude. Longitudes are most commonly expressed 
relative to the Prime Meridian of Greenwich but some countries, particularly in former times, have 
preferred to relate their longitudes to a prime meridian through their national astronomic observatory, usually 
sited in or near their capital city, e.g. Paris for France, Bogota for Colombia. The meridian of the projection 
zone origin is known as the Longitude of Origin. For certain projection types it is often termed the Central 
Meridian or abbreviated as CM and provides the direction of the northing axis of the projected coordinate 
reference system.   
 
Because of the steadily increasing distortion in the scale of the map with increasing distance from the origin, 
central meridian or other line on which the scale is the nominal scale of the projection, it is usual to limit the 
extent of a projection to within a few degrees of latitude or longitude of this point or line. Thus, for example, 
a UTM or other Transverse Mercator projection zone will normally extend only 2 or 3 degrees from the 
central meridian. Beyond this area another zone of the projection, with a new origin and central meridian, 
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needs to be used or created. The UTM system has a specified 60 numbered zones, each 6 degrees wide, 
covering the ellipsoid between the 84 degree North and 80 degree South  latitude parallels. Other Transverse 
Mercator projection zones may be constructed with different central meridians, and different origins chosen 
to suit the countries or states for which they are used. A number of these are included in the EPSG dataset. 
Similarly a Lambert Conic Conformal zone distorts most rapidly in the north-south direction and may, as in 
Texas, be divided into latitudinal bands. 
 
In order to further limit the scale distortion within the coverage of the zone or projection area, some 
projections introduce a scale factor at the origin (on the central meridian for Transverse Mercator 
projections), which has the effect of reducing the nominal scale of the map here and making it have the 
nominal scale some distance away. For example in the case of the UTM and some other Transverse Mercator 
projections a scale factor of slightly less than unity is introduced on the central meridian thus making it unity 
on two meridians either side of the central one, and reducing its departure from unity beyond these. The scale 
factor is a required parameter whether or not it is unity and is usually symbolised as kO.  
 
Thus for projections in the Transverse Mercator group in section 1.1 above, the parameters which are  
required to completely and unambiguously define the projection method are: 
 
  Latitude of natural origin 
  Longitude of natural origin (the central meridian) 
  Scale factor at natural origin (on the central meridian) 
  False easting 
  False northing 
 
Since the UTM zones obey set rules, it is sufficient to state only the UTM zone number (or central meridian). 
The remaining parameters from the above list are defined by the rules. 
 
It has been noted that the Transverse Mercator projection is employed for the topographical mapping of 
longitudinal bands of territories, limiting the amount of scale distortion by limiting the extent of the 
projection either side of the central meridian. Sometimes the shape, general trend and extent of some 
countries makes it preferable to apply a single zone of the same kind of projection but with its central line 
aligned with the trend of the territory concerned rather than with a meridian. So, instead of a meridian 
forming this true scale central line for one of the various forms of Transverse Mercator, or the equator 
forming the line for the Mercator, a line with a particular azimuth traversing the territory is chosen, and the 
same principles of construction are applied to derive what is now an Oblique Mercator. This projection is 
sometimes referred to as the Hotine Oblique Mercator after the British geodesist who set out its formulas for 
application to Malaysian Borneo (East Malaysia) and also West Malaysia. Laborde had previously developed 
the projection system for Madagascar, and Switzerland uses a similar system derived by Rosenmund.  
 
More recently (1974) Lee has derived formulas for a minimum scale factor projection for New Zealand 
known as the New Zealand Map Grid. The line of minimum scale follows the general alignment of the two 
main islands. This resembles an Oblique Mercator projection in its effect, but is not strictly an Oblique 
Mercator. The additional mathematical complexity of the projection enables its derivation via an Oblique 
Stereographic projection, which is sometimes the way it is classified. Because of its unique formulation 
inclusion of the New Zealand Map Grid within international mapping software was sporadic; as a 
consequence New Zealand has reverted to the frequently-encountered Transverse Mercator for its most 
recent mapping. 
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The parameters required to define an Oblique Mercator projection are: 
   Latitude of projection centre (the origin point on the initial line) 
  Longitude of projection centre  
  Azimuth of initial line [at the projection centre]  
  Scale factor on initial line 
  Angle from Rectified to Skewed grid 
and then either 
  False easting (easting at the projection natural origin)  
  False northing (northing at the projection natural origin)  
or  

Easting at projection centre 
Northing at projection centre   

 
It is possible to define the azimuth of the initial line through the latitude and longitude of two widely spaced 
points along that line.  This approach is not followed in the EPSG dataset. 
 
For Conical map projections, which for the normal aspect may be considered as the projection of the 
ellipsoid onto an enveloping cone in contact with the ellipsoid along a parallel of latitude, the parallel of 
contact is known as a standard parallel and the scale is regarded as true along this parallel. Sometimes the 
cone is imagined to cut the ellipsoid with coincidence of the two surfaces along two standard parallels. All 
other parallels will be concentric with the chosen standard parallel or parallels but for the Lambert Conical 
Conformal will have varying separations to preserve the conformal property. All meridians will radiate with 
equal angular separations from the centre of the parallel circles but will be compressed from the 360 
longitude degrees of the ellipsoid to a sector whose angular extent depends on the chosen standard parallel, - 
or both standard parallels if there are two. Of course the normal longitudinal extent of the projection will 
depend on the extent of the territory to be projected and will never approach 360 degrees. 
  
As in the case of the Transverse Mercator above it is sometimes desirable to limit the maximum positive 
scale distortion for the one standard parallel case by distributing it more evenly over the extent of the 
mapped area. This may be achieved by introducing a scale factor on the standard parallel of slightly less than 
unity thus making it unity on two parallels either side of it. This achieves the same effect as choosing two 
specific standard parallels in the first place, on which the nominal scale will be preserved. The projection is 
then a Lambert Conical Conformal projection with two standard parallels. Although, strictly speaking, the 
scale on a standard parallel is always the nominal scale of the map and the scale factor on the one or two 
standard parallels should be unity, it is sometimes convenient to consider a Lambert Conical Conformal 
projection with one standard parallel yet which has a scale factor on the standard parallel of less than unity. 
This provision is allowed for in the EPSG dataset, where the single standard parallel is referred to as the 
latitude of natural origin. For an ellipsoidal projection the natural origin will fall slightly poleward of  the 
mean of the latitudes of the two standard parallels. 
 
A longitude of origin or central meridian will again be chosen to bisect the area of the map or, more 
usually, the total national map area for the country or state concerned. Where this cuts the one standard 
parallel will be the natural origin of the projected coordinate reference system and, as for the Transverse 
Mercator, it will be given a False easting and False northing to ensure that there are no negative 
coordinates within the projected area (see Figure 5). Where two standard parallels are specified a false origin 
may be chosen at the intersection of a specific parallel with the central meridian. This point will be given an 
easting at false origin and a northing at false origin to ensure that no negative coordinates will result. 
Figure 6 illustrates these arrangements. 
 
It is clear that any number of Lambert projection zones may be formed according to which standard parallel 
or standard parallels are chosen and this is clearly exemplified by those which are used for many of the 
United States State Plane coordinate zones. They are normally chosen either, for one standard parallel, to 
approximately bisect the latitudinal extent of the country or area or, for two standard parallels, to embrace 
most of the latitudinal extent of the area. In the latter case the aim is to minimise the maximum scale 
distortion which will affect the mapped area and various formulas have been developed by different 
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mathematicians to select the appropriate standard parallels to achieve this. Kavraisky was one mathematician 
who derived a recipe for choosing the standard parallels to achieve minimal scale distortion. But however the 
selection of the standard parallels is made the same projection formulas apply. Thus the parameters needed to 
specify a projection in the Lambert projection will be as follows: 
 
 For a Lambert Conical Conformal with one standard parallel (1SP), 
  Latitude of natural origin (the Standard Parallel)  
       Longitude of natural origin (the Central Meridian) 
  Scale factor at natural origin (on the Standard Parallel) 
  False easting 
  False northing  
  
 For a Lambert Conical Conformal with two standard parallels (2SP), 
  Latitude of false origin 
  Longitude of false origin (the Central Meridian) 

Latitude of first standard parallel 
  Latitude of second standard parallel 
  Easting at false origin 
  Northing at false origin 
 
where the order of the standard parallels is not material if using the formulas which follow. 
 
The limiting case of the Lambert Conic Conformal having the apex of the cone at infinity produces a 
cylindrical projection, the Mercator.  Here, for the single standard parallel case the latitude of natural origin 
is the equator.  For the two standard parallel case the two parallels have equal latitude in the north and south 
hemispheres.  In both one and two standard parallel cases, grid coordinates are for the natural origin at the 
intersection of the equator and the central meridian (see figure 1). Thus the parameters needed to specify a 
map projection using the Mercator map projection method will be: 
 
 For a Mercator with one standard parallel (1SP), 
  Latitude of natural origin (always the Equator, documented only for completeness1)  
       Longitude of natural origin (the Central Meridian) 
  Scale factor at natural origin (on the Equator) 
  False easting 
  False northing  
  
 For a Mercator with two standard parallels (2SP), 
  Latitude of first standard parallel2 
       Longitude of natural origin (the Central Meridian) 
  False easting (grid coordinate at the intersection of the CM with the equator) 
  False northing 
   
  
For Azimuthal map projections, which are only infrequently used for ellipsoidal topographic mapping 
purposes, the natural origin will be at the centre of the projection where the map plane is imagined to be 
tangential to the ellipsoid and which will lie at the centre of the area to be projected. The central meridian 
will pass through the natural origin. This point will be given a False Easting and False Northing. 
 

120120                                                        
1 In the formulas that follow, the latitude of natural origin is not used. However for completeness in CRS 
labeling the EPSG dataset includes this parameter, which must have a value of zero. 
2 In the formulas that follow the absolute value of the first standard parallel must be used. 
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The parameters needed to specify the Stereographic map projection method are: 
  Latitude of natural origin 
  Longitude of natural origin (the central meridian for the oblique case) 
  Scale factor at natural origin 
  False easting  
  False northing  
 
 

TABLE 1. 
Parameters used in map projection conversions 

 
Parameter Name Symbol Description 
Angle from Rectified to 
Skew Grid 

γC The angle at the natural origin of an oblique projection through 
which the natural coordinate reference system is rotated to make 
the projection north axis parallel with true north. 

Azimuth of initial line αC 
 

The azimuthal direction (north zero, east of north being positive) 
of the great circle which is the centre line of an oblique 
projection. The azimuth is given at the projection center. 

Central meridian  See Longitude of natural origin 
Easting at false origin EF The easting value assigned to the false origin. 
Easting at projection 
centre 

EC The easting value assigned to the projection centre. 

False easting FE The value assigned to the abscissa (east or west) axis of the 
projection grid at the natural origin. 

False northing FN The value assigned to the ordinate (north or south) axis of the 
projection grid at the natural origin. 

False origin  A specific parallel/meridian intersection other than the natural 
origin to which the grid coordinates EF and NF, are assigned. 

Grid origin  The point which has coordinates (0,0). It is offset from the 
natural origin by the false easting and false northing. In some 
projection methods it may alternatively be offset from the false 
origin by Easting at false origin and Northing at false origin. In 
general this point is of no consequence. 

Initial line  The line on the surface of the earth model which forms the axis 
for the grid of an oblique projection. 

Initial longitude λI The longitude of the western limit of the first zone of a 
Transverse Mercator zoned grid system. 

Latitude of 1st standard 
parallel 

ϕ1 For a conic projection with two standard parallels, this is the 
latitude of one of the parallels at which the cone intersects with 
the ellipsoid. It is normally but not necessarily that nearest to the 
pole. Scale is true along this parallel. 

Latitude of 2nd standard 
parallel 

ϕ2 For a conic projection with two standard parallels, this is the 
latitude of one of the parallels at which the cone intersects with 
the ellipsoid. It is normally but not necessarily that nearest to the 
equator. Scale is true along this parallel. 

Latitude of false origin ϕF The latitude of the point which is not the natural origin and at 
which grid coordinate values easting at false origin and northing 
at false origin are defined. 
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Parameter Name Symbol Description 
Latitude of natural origin ϕO The latitude of the point from which the values of both the 

geographic coordinates on the ellipsoid and the grid coordinates 
on the projection are deemed to increment or decrement for 
computational purposes. Alternatively it may be considered as 
the latitude of the point which in the absence of application of 
false coordinates has grid coordinates of (0,0). 

Latitude of projection 
centre 

ϕC For an oblique projection, this is the latitude of the point at 
which the azimuth of the initial line is defined. 

Latitude of pseudo 
standard parallel 

ϕP Latitude of the parallel on which the conic or cylindrical 
projection is based. This latitude is not geographic, but is defined 
on the conformal sphere AFTER its rotation to obtain the oblique 
aspect of the projection. 

Latitude of standard 
parallel 

ϕF For polar aspect azimuthal projections, the parallel on which the 
scale factor is defined to be unity. 

Longitude of false origin λF The longitude of the point which is not the natural origin and at 
which grid coordinate values easting at false origin and northing 
at false origin are defined. 

Longitude of natural origin λO The longitude of the point from which the values of both the 
geographic coordinates on the ellipsoid and the grid coordinates 
on the projection are deemed to increment or decrement for 
computational purposes. Alternatively it may be considered as 
the longitude of the point which in the absence of application of 
false coordinates has grid coordinates of (0,0).  Sometimes 
known as "central meridian (CM)". 

Longitude of origin λO For polar aspect azimuthal projections, the meridian along which 
the northing axis increments and also across which parallels of 
latitude increment towards the north pole. 

Longitude of projection 
centre 

λC For an oblique projection, this is the longitude of the point at 
which the azimuth of the initial line is defined. 

Natural origin  The point from which the values of both the geographic 
coordinates on the ellipsoid and the grid coordinates on the 
projection are deemed to increment or decrement for 
computational purposes. Alternatively it may be considered as 
the point which in the absence of application of false coordinates 
has grid coordinates of (0,0). For example, for projected 
coordinate reference systems using the Transverse Mercator 
method, the natural origin is at the intersection of a chosen 
parallel and a chosen central meridian. 

Northing at false origin NF The northing value assigned to the false origin. 
Northing at projection 
centre 

NC The northing value assigned to the projection centre. 

Origin  See natural origin, false origin and grid origin. 
Projection centre  On an oblique cylindrical or conical projection, the point at 

which the direction of the cylinder or cone and false coordinates 
are defined. 

Scale factor at natural 
origin 

kO The factor by which the map grid is reduced or enlarged during 
the projection process, defined by its value at the natural origin. 

Scale factor on initial line kC The factor by which an oblique projection's map grid is reduced 
or enlarged during the projection process, defined by its value 
along the centre line of the cylinder or cone. 

Scale factor on pseudo 
standard parallel 

kP The factor by which the map grid is reduced or enlarged during 
the projection process, defined by its value at the pseudo-
standard parallel. 
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Parameter Name Symbol Description 
Zone width W The longitude width of a zone of a Transverse Mercator zoned 

grid system. 
 
 

TABLE 2 
Summary of Coordinate Operation Parameters required for some Map Projections 

 
Coordinate Operation Method Coordinate 

Operation 
Parameter 
Name 

Mercator 
(1SP) 

Mercator 
(2SP) 

Cassini-
Soldner 

Transverse 
Mercator 

Hotine 
Oblique 
Mercator 

Oblique 
Mercator 

Lambert 
Conical  
(1 SP) 

Lambert 
Conical  
(2 SP) 

Oblique 
Stereo-
graphic 

Latitude of false 
origin 

               1  

Longitude of 
false origin 

               2  

Latitude of 1st 

standard parallel 
 1      3        

Latitude of 2nd 
standard parallel 

       4  

Easting at false 
origin 

       5  

Northing at false 
origin 

       6  

Latitude of 
projection centre 

    1 1    

Longitude of 
projection centre 

    2 2    

Scale factor on 
initial line 

    3 3    

Azimuth of initial 
line 

    4 4    

Angle from 
Rectified to 
Skewed grid 

    5 5    

Easting at 
projection centre 

     6    

Northing at 
projection centre 

     7    

Latitude of 
natural origin  

1               
=equator 

 1 1   1  1 

Longitude of 
natural origin 

2 2 2 2   2  2 

Scale factor at 
natural origin 

3   3   3  3 

False easting 4 3 3 4 6  4      4 
False northing 5 4 4 5 7  5  5 
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TABLE 3 
Ellipsoid parameters used in conversions and transformations 

 
In the formulas in this Guidance Note the basic ellipsoidal parameters are represented by symbols and 
derived as follows: 
 
Primary ellipsoid parameters 
Parameter Name Symbol Description 
semi-major axis a Length of the semi-major axis of the ellipsoid, the radius of the 

equator. 
semi-minor axis b Length of the semi-minor axis of the ellipsoid, the distance along the 

ellipsoid axis between equator and pole. 
inverse flattening 1/f = a/(a – b) 
   
   
Derived ellipsoid parameters 
Parameter Name Symbol Description 
flattening f = 1 / (1/f) 
eccentricity e = √(2f – f2) 
second eccentricity e' = √[ e2 /(1 –e2)] 
radius of curvature in the 
meridian 

ρ radius of curvature of the ellipsoid in the plane of the meridian at 
latitude ϕ, where ρ = a(1 – e2)/(1 – e2sin2ϕ)3/2 

radius of curvature in the 
prime vertical 

ν radius of curvature of the ellipsoid perpendicular to the meridian at 
latitude ϕ, where ν = a /(1 – e2sin2ϕ)1/2 

radius of authalic sphere RA radius of sphere having same surface area as ellipsoid.  
RA = a * [(1 – {(1 –  e2) / (2 e)} * {LN[(1 – e) / (1 + e)]}) * 0.5]0.5 

radius of conformal sphere RC =  √(ρ  ν)  =  [a  √(1 –  e2) / (1 – e2 sin2ϕ) 

This is a function of latitude and therefore not constant. When used for 
spherical projections the use of ϕO (or ϕ1 as relevant to method) for ϕ 
is suggested, except if the projection is equal area when RA (see above) 
should be used. 
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1.3 Map Projection formulas 
 
In general, only formulas for computation on the ellipsoid are considered. Projection formulas for the 
spherical earth are simpler but the spherical figure is inadequate to represent positional data with great 
accuracy at large map scales for the real earth. Projections of the sphere are only suitable for illustrative 
maps at scale of 1:1 million or less where precise positional definition is not critical.  
 
The formulas which follow are largely adapted from "Map Projections - A Working Manual" by J.P.Snyder, 
published by the U.S. Geological Survey as Professional Paper No.13953. As well as providing an extensive 
overview of most map projections in current general use, and the formulas for their construction for both the 
spherical and ellipsoidal earth, this excellent publication provides computational hints and details of the 
accuracies attainable by the formulas. It is strongly recommended that all those who have to deal with map 
projections for medium and large scale mapping should follow its guidance.  
 
There are a number of different formulas available in the literature for map projections other than those 
quoted by Snyder. Some are closed formulas; others, for ease of calculation, may depend on series 
expansions and their precision will generally depend on the number of terms used for computation. 
Generally those formulas which follow in this chapter will provide results which are accurate to within a 
decimetre, which is normally adequate for exploration mapping purposes. Coordinate expression and 
computations for engineering operations are usually consistently performed in grid terms.  
 
The importance of one further variable should be noted. This is the unit of linear measurement used in the 
definition of projected coordinate reference systems. For metric map projections the unit of measurement is 
restricted to this unit. For non-metric map projections the metric ellipsoid semi-major axis needs to be 
converted to the projected coordinate reference system linear unit before use in the formulas below. The 
relevant ellipsoid is obtained through the datum part of the projected coordinate reference system. 
 
Reversibility 
Different formulas are required for forward and reverse map projection conversions: the forward formula 
cannot be used for the reverse conversion.  However both forward and reverse formulas are explicitly given 
in the sections below as parts of a single conversion method.  As such, map projection methods are described 
in the EPSG dataset as being reversible.  Forward and reverse formulas for each conversion method use the 
projection parameters appropriate to that method with parameter values unchanged. 
 
Longitude 'wrap-around' 
The formulas that follow assume longitudes are described using the range -180≤λ≤+180 degrees. If the area 
of interest crosses the 180° meridian and an alternative longitude range convention is being used, longitudes 
need to be converted to fall into this -180≤λ≤+180 degrees range. This may be achieved by applying the 
following: 
 If (λ –  λO) ≤ –180° then λ = λ + 360°. This may be required when λO > 0°.  

If (λ –  λO) ≥ 180° then λ = λ – 360°. This may be required when λO < 0°. 
 
In the formulas that follow the symbol λC  or λF may be used rather than λO, but the same principle applies. 
 
 

120120                                                        
3 This was originally published with the title “Map Projections Used by the US Geological Survey”. In some cases the formulas 
given are insufficient for global use. In these cases EPSG has modified the formulas. Note that the origin of most map projections is 
given false coordinates (FE and FN or EF and NF  or EC and NC) to avoid negative coordinates. In the EPSG formulas these values are 
included where appropriate so that the projected coordinates of points result directly from the quoted formulas. 
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1.3.1 Lambert Conic Conformal 
   
For territories with limited latitudinal extent but wide longitudinal width it may sometimes be preferred to 
use a single projection rather than several bands or zones of a Transverse Mercator. The Lambert Conic 
Conformal may often be adopted in these circumstances. But if the latitudinal extent is also large there may 
still be a need to use two or more zones if the scale distortion at the extremities of the one zone becomes too 
large to be tolerable. 
 
Conical projections with one standard parallel are normally considered to maintain the nominal map scale 
along the parallel of latitude which is the line of contact between the imagined cone and the ellipsoid. For a 
one standard parallel Lambert the natural origin of the projected coordinate system is the intersection of the 
standard parallel with the longitude of origin (central meridian). See Figure 5 at end of section 1.3. To 
maintain the conformal property the spacing of the parallels is variable and increases with increasing 
distance from the standard parallel, while the meridians are all straight lines radiating from a point on the 
prolongation of the ellipsoid's minor axis.  
 
Sometimes however, although a one standard parallel Lambert is normally considered to have unity scale 
factor on the standard parallel, a scale factor of slightly less than unity is introduced on this parallel. This is a 
regular feature of the mapping of some former French territories and has the effect of making the scale factor 
unity on two other parallels either side of the standard parallel. The projection thus, strictly speaking, 
becomes a Lambert Conic Conformal projection with two standard parallels. From the one standard parallel 
and its scale factor it is possible to derive the equivalent two standard parallels and then treat the projection 
as a two standard parallel Lambert conical conformal, but this procedure is seldom adopted. Since the two 
parallels obtained in this way will generally not have integer values of degrees or degrees minutes and 
seconds it is instead usually preferred to select two specific parallels on which the scale factor is to be unity, 
as for several State Plane Coordinate systems in the United States. 
  
The choice of the two standard parallels will usually be made according to the latitudinal extent of the area 
which it is wished to map, the parallels usually being chosen so that they each lie a proportion inboard of the 
north and south margins of the mapped area. Various schemes and formulas have been developed to make 
this selection such that the maximum scale distortion within the mapped area is minimised, e.g. Kavraisky in 
1934, but whatever two standard parallels are adopted the formulas are the same.  
 
 
1.3.1.1 Lambert Conic Conformal (2SP)  
(EPSG dataset coordinate operation method code 9802) 
 
To derive the projected Easting and Northing coordinates of a point with geographic coordinates (ϕ,λ) the 
formulas for the Lambert Conic Conformal two standard parallel case (EPSG datset coordinate operation 
method code 9802) are: 
 
 Easting,    E  = EF + r sin θ 
 Northing, N = NF + rF –  r cos θ   
 
where  m = cosϕ/(1 –  e2sin2ϕ) 0.5 for m1, ϕ1, and m2, ϕ2 where ϕ1  and ϕ2 are the latitudes of  
  the standard parallels 
 t  = tan(π/4 –  ϕ/2)/[(1 –  e sinϕ)/(1 + e sinϕ)] e/2 for t1, t2, tF and t using ϕ1, ϕ2, ϕF and ϕ   
   respectively 
 n = (ln m1 –  ln m2)/(ln t1 –  ln t2) 
 F = m1/(nt1

n) 
 r =  a F tn         for rF and r, where rF is the radius of the parallel of latitude of the false origin 
 θ = n(λ –  λF) 
 
The reverse formulas to derive the latitude and longitude of a point from its Easting and Northing values are: 
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 ϕ = π/2 –  2atan{t'[(1 –  esinϕ)/(1 + esinϕ)]e/2} 
 λ = θ'/n +λF 
where 
 r' = ±{(E –  EF) 2 + [rF –  (N –  NF)] 2}0.5, taking the sign of n 
 t' = (r'/(aF))1/n 
 θ' = atan [(E –  EF)/(rF –  (N –  NF))] 
and n, F, and rF are derived as for the forward calculation. 
 
Note that the formula for ϕ requires iteration. First calculate t' and then a trial value for ϕ using  
ϕ = π/2-2atan t'. Then use the full equation for ϕ substituting the trial  value into the right hand side of the 
equation. Thus derive a new value for ϕ. Iterate the process until ϕ does not change significantly. The 
solution should quickly converge, in 3 or 4 iterations. 
  
Example: 
For Projected Coordinate Reference System: NAD27 / Texas South Central 
 
Parameters: 

Ellipsoid: Clarke 1866 a = 6378206.400 metres = 20925832.16 US survey feet 
  1/f = 294.97870   
 then  e = 0.08227185  e2 = 0.00676866 

    
Latitude of false origin ϕF 27°50'00"N = 0.48578331 rad 
Longitude of false origin λF 99°00'00"W = -1.72787596 rad 
Latitude of 1st standard parallel ϕ1 28°23'00"N = 0.49538262 rad 
Latitude of 2nd standard parallel ϕ2 30°17'00"N = 0.52854388 rad 
Easting at false origin EF 2000000.00 US survey feet 
Northing at false origin NF             0.00 US survey feet 

 
 
Forward calculation for:  

Latitude ϕ = 28°30'00.00"N = 0.49741884 rad 
Longitude λ = 96°00'00.00"W = -1.67551608 rad 

 
 first gives : 

m1 = 0.88046050  m2 = 0.86428642 
t = 0.59686306  tF = 0.60475101 
t1 = 0.59823957  t2 = 0.57602212 
n = 0.48991263  F = 2.31154807 
r = 37565039.86  rF = 37807441.20 
θ = 0.02565177     

 
Then Easting E = 2963503.91 US survey feet 
 Northing N =   254759.80 US survey feet 

 
 
Reverse calculation for same easting and northing first gives: 

θ' = 0.025651765 
t' = 0.59686306 
r' = 37565039.86 

 
Then Latitude ϕ = 28°30'00.000"N 
 Longitude λ = 96°00'00.000"W 
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1.3.1.2 Lambert Conic Conformal (1SP)  
(EPSG dataset coordinate operation method code 9801) 
 
The formulas for the two standard parallel can be used for the Lambert Conic Conformal single standard 
parallel case (EPSG dataset coordinate operation method code 9801) with minor modifications. Then 
 E = FE + r sinθ 
 N = FN + rO - r cosθ, using the natural origin rather than the false origin. 
where 
 n = sin ϕO 
 r = a F tn kO      for rO, and r 
 t is found for  tO, ϕO and t, ϕ and m, F, and θ are found as for the two standard parallel case. 
  
The reverse formulas for ϕ and λ are as for the two standard parallel case above, with n, F and rO as before 
and 
 θ' = atan{(E –  FE)/[rO – (N –  FN)]} 
 r' = ±{(E –  FE)2 + [rO –  (N –  FN)]2}0.5, taking the sign of n 
 t' = (r'/(a kO F))1/n 
 
Example: 
For Projected Coordinate Reference System: JAD69 / Jamaica National Grid 
 
Parameters: 

Ellipsoid: Clarke 1866 a = 6378206.400 metres  1/f = 294.97870 
 then  e = 0.08227185  e2 = 0.00676866 

    
Latitude of natural origin ϕO 18°00'00"N = 0.31415927 rad 
Longitude of natural origin λO 77°00'00"W = -1.34390352 rad 
Scale factor at natural origin kO 1.000000   
False easting FE 250000.00 metres  
False northing FN 150000.00 metres  

 
Forward calculation for:  

Latitude ϕ = 17°55'55.80"N = 0.31297535 rad 
Longitude λ = 76°56'37.26"W = -1.34292061 rad 

 
first gives 

mO = 0.95136402  tO = 0.72806411 
F = 3.39591092  n = 0.30901699 
R = 19643955.26  rO = 19636447.86 
θ = 0.00030374  t = 0.728965259 

 
Then Easting E = 255966.58 metres 
 Northing N = 142493.51 metres 

 
 
Reverse calculation for the same easting and northing first gives 
 

θ' = 0.000303736 
t' = 0.728965259 
mO = 0.95136402 
r' = 19643955.26 

 
Then Latitude ϕ = 17°55'55.80"N 
 Longitude λ = 76°56'37.26"W 
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1.3.1.3 Lambert Conic Conformal (West Orientated) 
(EPSG dataset coordinate operation method code 9826) 
 
In older mapping of Denmark and Greenland the Lambert Conic Conformal is used with axes positive north 
and west. To derive the projected Westing and Northing coordinates of a point with geographic coordinates (
ϕ, λ) the formulas are as for the standard Lambert Conic Conformal (1SP) case above (EPSG dataset 
coordinate operation method code 9801) except for: 
 

W =  FE – r * sin θ 
 
In this formula the term FE retains its definition, i.e. in the Lambert Conic Conformal (West Orientated) 
method it increases the Westing value at the natural origin. In this method it is effectively false westing 
(FW). 
 
The reverse formulas to derive the latitude and longitude of a point from its Westing and Northing values are 
as for the standard Lambert Conic Conformal (1SP) case except for: 
 
θ' = atan[(FE – W)/{rO – (N – FN)}] 
r' = +/-[(FE – W)2 + {rO – (N – FN)}2]0.5, taking the sign of n 
 
 
1.3.1.4 Lambert Conic Conformal (2 SP Belgium) 
(EPSG dataset coordinate operation method code 9803) 
 
In 1972, in order to retain approximately the same grid coordinates after a change of geodetic datum, a 
modified form of the two standard parallel case was introduced in Belgium. In 2000 this modification was 
replaced through use of the regular Lambert Conic Conformal (2 SP) map projection with appropriately 
modified parameter values. 
 
In the 1972 modification the formulas for the regular Lambert Conic Conformal (2SP) case given above are 
used except for:  
 Easting,    E = EF + r sin (θ –  a) 
 Northing, N = NF + rF - r cos (θ –  a) 
and for the reverse formulas 
 λ = [(θ' + a)/n] + λF 
where a = 29.2985 seconds. 
 
Example: 
For Projected Coordinate Reference System: Belge 1972 / Belge Lambert 72 
 
Parameters: 

Ellipsoid: International 1924 a = 6378388 metres  1/f = 297.0 
 then  e = 0.08199189  e2 = 0.006722670 

    
Latitude of false origin ϕF 90°00'00"N = 1.57079633 rad 
Longitude of false origin λF   4°21'24.983"E = 0.07604294 rad 
Latitude of 1st  standard parallel ϕ1 49°50'00"N = 0.86975574 rad 
Latitude of 2nd standard parallel ϕ2 51°10'00"N = 0.89302680 rad 
Easting at false origin EF 150000.01 metres  
Northing at false origin NF 5400088.44 metres  

 
Forward calculation for:  
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Latitude ϕ = 50°40'46.461"N = 0.88452540 rad 
Longitude λ =   5°48'26.533"E = 0.10135773 rad 

 
first gives : 

m1 = 0.64628304  m2 = 0.62834001 
t = 0.35913403  tF = 0.00 
t1 = 0.36750382  t2 = 0.35433583 
n = 0.77164219  F = 1.81329763 
r = 5248041.03  rF = 0.00 
θ = 0.01953396  a = 0.00014204 

 
Then Easting E = 251763.20 metres 
 Northing N = 153034.13 metres 

 
Reverse calculation for same easting and northing first gives: 

θ' = 0.01939192 
t' = 0.35913403 
r' = 5248041.03 

 
Then Latitude ϕ = 50°40'46.461"N 
 Longitude λ =   5°48'26.533"E 

 
 
1.3.1.5 Lambert Conic Near-Conformal 
(EPSG dataset coordinate operation method code 9817) 
 
The Lambert Conformal Conic with one standard parallel formulas, as published by the Army Map Service, 
are still in use in several countries. The AMS uses series expansion formulas for ease of computation, as was 
normal before the electronic computer made such approximate methods unnecessary. Where the expansion 
series have been carried to enough terms the results are the same to the centimetre level as through the 
Lambert Conic Conformal (1SP) formulas above. However in some countries the expansion formulas were 
truncated to the third order and the map projection is not fully conformal. The full formulas are used in Libya 
but from 1915 for France, Morocco, Algeria, Tunisia and Syria the truncated formulas were used. In 1943 in 
Algeria and Tunisia, from 1948 in France, from 1953 in Morocco and from 1973 in Syria the truncated 
formulas were replaced with the full formulas.  
 
To compute the Lambert Conic Near-Conformal the following formulas are used. First compute constants for 
the projection: 
 

n = f / (2 – f) 
A = 1 / (6 ρO νO) where ρO and νO are computed as in table 3 in section 1.2 above. 
A' = a [ 1–  n + 5 (n2 –  n3 ) / 4 + 81 ( n4 –  n5 ) / 64]*π /180 
B' = 3 a [ n –  n2 + 7 ( n3 –  n4 ) / 8 + 55 n5 / 64] / 2 
C' = 15 a [ n2 – n3 + 3 ( n4 –  n5 ) / 4 ] / 16 
D' = 35 a [ n3 –  n4 + 11 n5 / 16 ] / 48 
E' = 315 a [ n4 –  n5 ] / 512 
rO = kO νO / tan ϕO 
so = A' ϕO –  B' sin 2ϕO + C' sin 4ϕO –  D' sin 6ϕO + E' sin 8ϕO 

  where in the first term ϕO is in degrees, in the other terms ϕO is in radians. 
 
Then for the computation of easting and northing from latitude and longitude: 
 

s = A' ϕ –  B' sin 2ϕ + C' sin 4ϕ –  D' sin 6ϕ + E' sin 8ϕ 
  where in the first term ϕ is in degrees, in the other terms ϕ is in radians. 
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m = [s –  sO] 
M = kO ( m + Am3)           (see footnote4) 

r = rO –  M 
θ = (λ – λO) sin ϕO 

and   
E = FE + r sinθ 
N = FN + M + r sinθ tan (θ / 2) 

 
The reverse formulas for ϕ and λ from E and N are: 
 

θ' = atan {(E –  FE) / [rO –  (N –  FN)]} 
r' = ±{(E –  FE) 2 + [rO –  (N –  FN)] 2}0.5, taking the sign of ϕO 

M' = rO – r' 
 
If an exact solution is required, it is necessary to solve for m and ϕ using iteration of the two equations 
Firstly: 

m' = m' – [M' – kO m' – kO A (m')3] / [– kO – 3 kO A (m')2] 
using M' for m' in the first iteration. This will usually converge (to within 1mm) in a single iteration.  
Then 

ϕ' = ϕ' +{m' + sO – [A' ϕ' (180/π) – B' sin 2ϕ'  + C' sin 4ϕ'  –  D' sin 6ϕ' + E' sin 8ϕ']}/A' (π/180) 
first using ϕ' = ϕO + m'/A' (π/180). 
 
However the following non-iterative solution is accurate to better than 0.001" (3mm) within 5 degrees 
latitude of the projection origin and should suffice for most purposes: 

m' = M' – [M' – kO M' – kO A (M')3] / [– kO – 3 kO A (M')2] 
ϕ' = ϕO + m'/A' (π/180) 
s' = A' ϕ' –  B' sin 2ϕ'  + C' sin 4ϕ'  –  D' sin 6ϕ' + E' sin 8ϕ' 

  where in the first term ϕ' is in degrees, in the other terms ϕ' is in radians. 
ds' = A'(180/π) – 2B' cos 2ϕ'  + 4C' cos 4ϕ'  –  6D' cos 6ϕ' + 8E' cos 8ϕ' 
ϕ = ϕ' – [(m' + sO – s') / (–ds')] radians 

 
Then after solution of ϕ using either method above 

λ = λO + θ' / sin ϕO where λO and λ are in radians 
 
Example:  
For Projected Coordinate Reference System: Deir ez Zor / Levant Zone 
 
Parameters: 

Ellipsoid: Clarke 1880 (IGN) a = 6378249.2 metres  1/f = 293.4660213 
 then    n = 0.001706682563 

    
Latitude of natural origin ϕO 34°39'00"N = 0.604756586 rad 
Longitude of natural origin λO 37°21'00"E = 0.651880476 rad 
Scale factor at natural origin kO 0.99962560   
False easting FE 300000.00 metres  
False northing FN 300000.00 metres  

 
Forward calculation for:  

Latitude ϕ = 37°31'17.625"N = 0.654874806 rad 
Longitude λ = 34°08'11.291"E = 0.595793792 rad 

 
120120                                                        
4 This is the term that is truncated to the third order. To be equivalent to the Lambert Conic Conformal (1SP) it would 
be M = kO ( m + Am3 + Bm4+ Cm5+ Dm6 ). B, C and D are not detailed here. 
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first gives : 
A = 4.1067494 * 10-15  A' = 111131.8633 
B' = 16300.64407  C' = 17.38751 
D' = 0.02308  E' = 0.000033 
sO = 3835482.233  rO = 9235264.405 
       
s = 4154101.458  m = 318619.225 
M = 318632.72  r = 8916631.685 
θ = -0.03188875     

 
Then Easting E =   15707.96 metres  (c.f. E =   15708.00 using full formulas) 
 Northing N = 623165.96 metres  (c.f. N = 623167.20 using full formulas) 

 
Reverse calculation for same easting and northing first gives: 

θ' = -0.031888749 
r' = 8916631.685 
M' = 318632.717 

Using the non-iterative solution: 
m' = 318619.222 
ϕ' = 0.654795830 
s' = 4153599.259 
ds' = 6358907.456 

 
Then Latitude ϕ = 0.654874806 rad = 37°31'17.625"N 
 Longitude λ = 0.595793792 rad = 34°08'11.291"E 

 
 
 
1.3.2 Krovak Oblique Conformal Conic 
(EPSG dataset coordinate operation method code 9819) 
 
The normal case of the Lambert Conformal conic is for the axis of the cone to be coincident with the minor 
axis of the ellipsoid, that is the axis of the cone is normal to the ellipsoid at a geographic pole. For the 
Oblique Conformal Conic the axis of the cone is normal to the ellipsoid at a defined location and its 
extension cuts the minor axis at a defined angle. The map projection method is similar in principle to the 
Oblique Mercator (see section 1.3.6). It is used in the Czech Republic and Slovakia under the name ‘Krovak’ 
projection, where like the Laborde oblique cylindrical projection in Madagascar (section 1.4.6.1) the rotation 
to north is made in spherical rather than plane coordinates. The geographic coordinates on the ellipsoid are 
first reduced to conformal coordinates on the conformal (Gaussian) sphere. These spherical coordinates are 
then rotated to north and the rotated spherical coordinates then projected onto the oblique cone and converted 
to grid coordinates. The pseudo standard parallel is defined on the conformal sphere after its rotation. It is 
then the parallel on this sphere at which the map projection is true to scale; on the ellipsoid it maps as a 
complex curve.  A scale factor may be applied to the map projection to increase the useful area of coverage. 

 
The defining parameters for the Krovak oblique conformal conic map projection are: 

ϕC = latitude of projection centre, the point used as the origin of the conformal sphere 
λO  = longitude of origin 
αC  = azimuth on conformal sphere of initial line passing through the projection centre 

= co-latitude of the cone axis at point of intersection with the conformal sphere  
ϕP = latitude of pseudo standard parallel 
kP = scale factor on pseudo standard parallel 
FE = Easting at grid origin 
FN = Northing at grid origin 
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The grid origin is the intersection on the conformal sphere of the pseudo-standard parallel with the longitude 
of origin. 
 
From these the following constants for the projection may be calculated : 

 
A = a (1 –  e2 )0.5 / [ 1 –  e2 sin2 (ϕC) ] 
B = {1 + [e2 cos4ϕC / (1 –  e2 )]} 0.5 
γO = asin [sin (ϕC) / B] 
tO = tan(π / 4 + γO / 2) . [ (1 + e sin (ϕC)) / (1 –  e sin (ϕC)) ] e.B/2 / [tan(π / 4 + ϕC/ 2)] B 
n  =  sin (ϕP) 
rO = kP A / tan (ϕP) 
 
To derive the projected ‘Easting’ and ‘Northing’ coordinates of a point with geographic coordinates  
(ϕ,λ) the formulas for the Krovak oblique conic conformal are: 
 
 Southing:  X = FN + r cos θ 
 Westing:   Y = FE + r sin θ 
where 
 
U = 2 (atan { to tanB(ϕ/ 2 + π / 4 ) / [(1 + e sin (ϕ)) / (1 –  e sin (ϕ))] e.B/2 } –  π / 4) 
V = B (λO –   λ) 
S  = asin [ cos (αC) sin ( U ) + sin (αC) cos (U) cos (V) ] 
D = asin [ cos ( U ) sin ( V ) / cos ( S ) ] 
θ = n D 
r = rO tan n (π / 4 + ϕP/ 2) / tan n ( S/2 + π / 4 ) 
 
Note that the terms ‘Easting’ and ‘Northing’ here refer to the two map grid coordinates.  Their actual 
geographic direction depends upon the azimuth of the centre line. Note also that the formula for D is 
satisfactory for the normal use of the projection within the pseudo-longitude range on the conformal sphere 
of ±90 degrees from the central line of the projection. Should there be a need to exceed this range (which is 
not necessary for application in the Czech and Slovak Republics) then for the calculation of D use: 

sin(D) = cos(U) * sin(V) / cos(S) 
cos(D) = {[cos(αC)*sin(S) - sin(U)] / [sin(αC)*cos(S)]} 
D = atan2(sinD, cosD) 

 
 
The reverse formulas to derive the latitude and longitude of a point from its 'Easting' (Y) and 'Northing' (X) 
values are: 
 
r'  = [(Y –  FE) 2 + (X –  FN) 2] 0.5 
θ'  =  atan [(Y –  FE)/(X –  FN)] 
D' = θ' / sin (ϕP) 
S' = 2{atan[(rO / r' )1/n tan(π / 4 + ϕP/ 2)] – π / 4} 
U' = asin [cos (αC) sin (S') –  sin (αC) cos (S') cos (D')] 
V' = asin [cos (S') sin (D') / cos (U')] 
 
Latitude ϕ is found by iteration using U' as the value for ϕ j-1 in the first iteration 
 
ϕj = 2 ( atan { tO

-1/ B tan 1/ B ( U'/2 + π / 4 ) [(1 + e sin ( ϕ j-1))/ ( 1 – e sin ( ϕ j-1))] e/2 }–  π / 4) 
 
3 iterations will usually suffice. Then: 
 
λ  =  λO– V' / B 
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Example 

For Projected Coordinate Reference System: S-JTSK (Ferro) / Krovak 
 
N.B. Krovak projection uses Ferro as the prime meridian. This has a longitude with reference to Greenwich 
of 17 degrees 40 minutes West. To apply the formulas the defining longitudes must be corrected to the 
Greenwich meridian. 
 
Parameters: 

Ellipsoid: Bessel 1841 a = 6377397.155metres  1/f = 299.15281 
 then  e = 0.081696831  e2 = 0.006674372 

    
Latitude of projection centre ϕC 49°30'00"N = 0.863937979 rad 
Longitude of origin λO 42°30'00" East of Ferro 

Longitude of Ferro is   17°40'00" West of Greenwich 
 λO relative to Greenwich:   24°50'00" = 0.433423431 rad 

Azimuth of initial line αC 30°17'17.3031"   
Latitude of pseudo standard parallel ϕP 78°30'00"N   
Scale factor on pseudo standard parallel kP 0.9999   
Easting at grid origin FE 0.00 metres 
Northing at grid origin FN 0.00 metres 

 
Projection constants: 

A = 6380703.611  B = 1.000597498 
γO = 0.863239103  tO = 1.003419164 
n = 0.979924705  rO = 1298039.005 

 
Forward calculation for:  

Latitude ϕ = 50°12'32.4416"N = 0.876312566 rad 
Longitude λ = 16°50'59.1790"E = 0.294083999 rad 

 
first gives : 

U = 0.875596949 
V = 0.139422687 
S = 1.386275049 
D = 0.506554623 
θ = 0.496385389 
r = 1194731.014 

 
Then ‘Northing’ X = 1050538.643 metres 
 ‘Easting’ Y =   568990.997 metres 

 
where ‘Northing’ increases southwards and ‘Easting’ increases westwards. 
 
Reverse calculation for the same ‘Northing’ and ‘Easting’ gives 
 

r' = 1194731.014 
θ' = 0.496385389 
D' = 0.506554623 
S' = 1.386275049 
U' = 0.875596949 
V' = 0.139422687 

 



OGP Surveying and Positioning Guidance Note number 7, part 2 –  November2009 
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org. 

 

Page 30 of 120 

Then by iteration 
ϕ1 = 0.876310601 rad 
ϕ2 = 0.876312560 rad 
ϕ3 = 0.876312566 rad 

 
Latitude ϕ = 0.876312566 rad = 50°12'32.4416"N 
Longitude λ = 0.294083999 rad = 16°50'59.1790"E of Greenwich 

 
   
1.3.3 Mercator  
(EPSG dataset coordinate operation method codes 9804 and 9805) 
  
The Mercator map projection is a special limiting case of the Lambert Conic Conformal map projection with 
the equator as the single standard parallel. All other parallels of latitude are straight lines and the meridians 
are also straight lines at right angles to the equator, equally spaced. It is the basis for the transverse and 
oblique forms of the projection. It is little used for land mapping purposes but is in almost universal use for 
navigation charts. As well as being conformal, it has the particular property that straight lines drawn on it are 
lines of constant bearing. Thus navigators may derive their course from the angle the straight course line 
makes with the meridians. 
 
In the few cases in which the Mercator projection is used for terrestrial applications or land mapping, such as 
in Indonesia prior to the introduction of the Universal Transverse Mercator, a scale factor may be applied to 
the projection. This has the same effect as choosing two standard parallels on which the true scale is 
maintained at equal north and south latitudes either side of the equator. 
 
The formulas to derive projected Easting and Northing coordinates are: 
 
For the two standard parallel case, kO, the scale factor at the equator or natural origin, is first calculated from 

kO = cosϕ1 /(1 –  e2sin2ϕ1) 0.5 
 where ϕ1 is the absolute value of the first standard parallel (i.e. positive).   
 
Then, for both one and two standard parallel cases,  
 
 E = FE + a kO (λ –  λ O)               
 N = FN + a kO ln{tan(π/4 + ϕ/2)[(1 – esinϕ)/(1 + esinϕ)](e/2)}                      
             where symbols are as listed above and logarithms are natural. 
  
The reverse formulas to derive latitude and longitude from E and N values are: 
  
 ϕ = χ + (e2/2 + 5e4/24 + e6/12 + 13e8/360) sin(2χ)  
  + (7e4/48 + 29e6/240 + 811e8/11520) sin(4χ) 
  + (7e6/120 +  81e8/1120) sin(6χ)  + (4279e8/161280) sin(8χ) 
 
where   χ = π/2 –  2 atan t 
 
  t = B(FN-N)/(a. kO) 
  B = base of the natural logarithm, 2.7182818… 

and for the 2 SP case, kO is calculated as for the forward transformation above. 
  
 λ =  [(E –  FE)/akO]  + λO 
 
Note that in these formulas common to both 1SP and 2SP cases, the parameter latitude of natural origin (ϕO) 
is not used. However for the Merctor (1SP) method, for completeness in CRS labelling the EPSG dataset 
includes this parameter, which must have a value of zero. 
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Examples: 
1. Mercator (with two standard parallels) (EPSG dataset coordinate operation method code 9805) 
 
For Projected Coordinate Reference System: Pulkovo 1942 / Mercator Caspian Sea 
 
Parameters: 

Ellipsoid: Krassowski 1940 a = 6378245.0 metres  1/f = 298.3 
 then  e = 0.08181333  e2 = 0.00669342 

    
Latitude of 1st standard parallel ϕ1 42°00'00"N = 0.73303829 rad 
Longitude of natural origin λO 51°00'00"E = 0.89011792 rad 
False easting FE 0.00 metres  
False northing FN 0.00 metres  

 
then scale factor at natural origin kO  (at latitude of natural origin at 0°N) =  0.744260894. 
 
Forward calculation for:  

Latitude ϕ = 53°00'00.00"N = 0.9250245 rad 
Longitude λ = 53°00'00.00"E = 0.9250245 rad 

 
gives Easting E =   165704.29 metres 
 Northing N = 5171848.07 metres 

 
Reverse calculation for same easting and northing first gives: 

t = 0.336391288 
χ = 0.921795958 

 
Then Latitude ϕ = 53°00'00.000"N 
 Longitude λ = 53°00'00.000"E 

 
 
2. Mercator (1SP) (EPSG dataset coordinate operation method code 9804) 
 
For Projected Coordinate Reference System: Makassar / NEIEZ 
 
Parameters: 

Ellipsoid: Bessel 1841 a = 6377397.155metres  1/f = 299.15281 
 then  e = 0.081696831   

  
Latitude of natural origin ϕO     0°00'00"N = 0.0 rad 
Longitude of natural origin λO 110°00'00"E = 1.91986218 rad 
Scale factor at natural origin kO 0.997   
False easting FE 3900000.00 metres  
False northing FN   900000.00 metres  

 
Forward calculation for:  

Latitude ϕ =     3°00'00.00"S = -0.05235988 rad 
Longitude λ = 120°00'00.00"E = 2.09439510 rad 

 
gives Easting E = 5009726.58 metres 
 Northing N =   569150.82 metres 

 
Reverse calculation for same easting and northing first gives: 



OGP Surveying and Positioning Guidance Note number 7, part 2 –  November2009 
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org. 

 

Page 32 of 120 

t = 1.0534121 
χ = -0.0520110 

 
Then Latitude ϕ =    3°00'00.000"S 
 Longitude λ = 120°00'00.000"E 

 
 
1.3.3.1 Mercator (Spherical) 
(EPSG dataset coordinate operation method code 1026) 
 
The formulas to derive projected Easting and Northing coordinates from spherical latitude ϕ and longitude λ 
are: 
 E = FE + R (λ  –  λO)               
 N = FN + R ln[tan(π/4 + ϕ/2)]                    
where λO is the longitude of natural origin and FE and FN are false easting and false nothing. 
 
R is the radius of the sphere and will normally be one of the CRS parameters. If the figure of the earth used 
is an ellipsoid rather than a sphere then R should be calculated as the radius of the conformal sphere at the 
projection origin at latitude ϕO using the formula for RC given in section 1.2, table 3. Note however that if 
applying spherical formula to ellipsoidal coordinates, the projection properties are not preserved. 
 
If latitude ϕ = 90º, N is infinite. The above formula for N will fail near to the pole, and should not be used 
poleward of 88º. 
 
The reverse formulas to derive latitude and longitude on the sphere from E and N values are: 
 D = – (N – FN) / R = (FN – N) / R 
 ϕ = π/2 –  2 atan(eD) where e=base of natural logarithms, 2.7182818… 
 λ =  [(E –  FE)/R]  + λO 
 
Note that in these formulas, the parameter latitude of natural origin (ϕO) is not used. However for the 
Merctor (Spherical) method, for completeness in CRS labelling the EPSG dataset includes this parameter, 
which must have a value of zero. 
 
 
Example 

For Projected Coordinate Reference System: World Spherical Mercator 
 
Parameters: 

Sphere: R = 6371007.0 metres 
    

Latitude of natural origin ϕO 0°00'00.000"N = 0.0 rad 
Longitude of natural origin λO 0°00'00.000"E = 0.0 rad 
False easting FE 0.00 metres  
False northing FN 0.00 metres  

 
Forward calculation for:  

Latitude ϕ =   24°22'54.433"N =   0.425542460 rad 
Longitude λ = 100°20'00.000"W = –1.751147016 rad 

 
whence  
 E = –11 156 569.90 m 
 N =     2 796 869.94 m 
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Reverse calculation for the same point (–11 156 569.90 m E, 2 796 869.94m N) first gives: 
 D = –0.438999665 
 

Then Latitude ϕ =   0.425542460 rad =   24°22'54.433"N 
 Longitude λ = –1.751147016 rad = 100°20'00.000"W 

 
 
 
 
1.3.3.2 Popular Visualisation Pseudo Mercator 
(EPSG dataset coordinate operation method code 1024) 
 
This method is utilised by some popular web mapping and visualisation applications. It applies standard 
Mercator (Spherical) formulas (section 1.3.3.1 above) to ellipsoidal coordinates and the sphere radius is 
taken to be the semi-major axis of the ellipsoid. This approach only approximates to the more rigorous 
application of ellipsoidal formulas to ellipsoidal coordinates (as given in EPSG dataset coordinate operation 
method codes 9804 and 9805 in section 1.3.3 above).  Unlike either the spherical or ellipsoidal Mercator 
projection methods, this method is not conformal: scale factor varies as a function of azimuth, which creates 
angular distortion. Despite angular distortion there is no convergence in the meridian.  
 
The formulas to derive projected Easting and Northing coordinates from ellipsoidal latitude ϕ and longitude 
λ first derive the radius of the sphere (R) from: 
 R = a 
 
Then applying spherical Mercator formulae: 
 
 E = FE + R (λ –  λO)               
 N = FN + R ln[tan(π/4 + ϕ/2)]                    
where symbols are as listed in 1.3.3.1 above and logarithms are natural. 
 
If latitude ϕ = 90º, N is infinite. The above formula for N will fail near to the pole, and should not be used 
poleward of 88º. 
 
The reverse formulas to derive latitude and longitude on the ellipsoid from E and N values are: 
 D = – (N – FN) / R = (FN – N) / R 
 ϕ = π/2 –  2 atan(eD) where e=base of natural logarithms, 2.7182818… 
 λ =  [(E –  FE)/R]  + λO 
 
 
qα is the scale factor at a given azimuth α. It is a function of the radius of curvature at that azimuth, R', 
derived from: 
 R' = ρ ν / (ν cos2α+ ρ sin2α) 
 qα = R / (R' cos ϕ) 
where ρ and ν are the radii of curvature of the ellipsoid at latitude ϕ in the plane of the meridian and 
perpendicular to the meridian respectively; 

ρ = a (1 – e2) / (1 – e2sin2ϕ)3/2 
ν = a / (1 – e2sin2ϕ)1/2 
 

Then when the azimuth is 0º, 180º, 90º or 270º the scale factors in the meridian (h) and on the parallel (k) 
are: 
 q0 = q180  = h = R / (ρ cos ϕ) 
 q90 = q270 = k = R / (ν cos ϕ) 
which demonstrates the non-conformallity of the Pseudo Mercator method. 
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Maximum angular distortion ω is a function of latitude and is found from: 
 ω = 2 asin{[ABS(h – k)] / (h + k)} 
 
Note that in these formulas, as with those of the Mercator (spherical) method above, the parameter latitude of 
natural origin (ϕO) is not used. However for completeness in CRS labelling the EPSG dataset includes this 
parameter, which must have a value of zero. 
 
Example 

For Projected Coordinate Reference System: WGS 84 / Pseudo-Mercator 
 
Parameters: 

Ellipsoid: WGS 84 a = 6378137.0 metres  1/f = 298.2572236 
    

Latitude of natural origin ϕO 0°00'00.000"N = 0.0 rad 
Longitude of natural origin λO 0°00'00.000"E = 0.0 rad 
False easting FE 0.00 metres  
False northing FN 0.00 metres  

 
Forward calculation for the same coordinate values as used for the Mercator (Spherical) example in 1.3.3.1 
above:  

Latitude ϕ =   24°22'54.433"N =   0.425542460 rad 
Longitude λ = 100°20'00.000"W = –1.751147016 rad 

 
 R  = 6378137.0 
whence  
 E = –11 169 055.58 m 
 N =     2 800 000.00 m 
and  
 h  = 1.1034264 
 k  = 1.0972914 
 ω  = 0°19'10.01" 
 
Reverse calculation for a point 10km north on the grid (–11 169 055.58 m E, 2 810 000.00m N) first gives: 
 D = –0.44056752 
 

Then Latitude ϕ =    0.426970023 rad =   24°27'48.889"N 
 Longitude λ = –1.751147016 rad = 100°20'00.000"W 

 
 
In comparision, the same WGS 84 ellipsoidal coordinates when converted to the WGS 84 / World Mercator 
projected coordinate reference system (EPSG CRS code 3395) using the ellipsoidal Mercator (1SP) method 
described above results in a grid distance between the two points of 9944.4m, a scale difference of ~0.5%. 
 

WGS 84 WGS 84 / Pseudo-Mercator WGS 84 / World Mercator 
Latitude Longitude Easting Northing Easting Northing 

 24°27'48.889"N 100°20'00.000"W –11169055.58m 2810000.00m –11169055.58m 2792311.49m 
 24°22'54.433"N 100°20'00.000"W –11169055.58m 2800000.00m –11169055.58m 2782367.06m 
                  0.00m     10000.00m                 0.00m       9944.43m 
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1.3.4 Cassini-Soldner 
(EPSG dataset coordinate operation method code 9806) 
 
The Cassini-Soldner projection is the ellipsoidal version of the Cassini projection for the sphere. It is not 
conformal but as it is relatively simple to construct it was extensively used in the last century and is still 
useful for mapping areas with limited longitudinal extent. It has now largely been replaced by the conformal 
Transverse Mercator which it resembles. Like this, it has a straight central meridian along which the scale is 
true, all other meridians and parallels are curved, and the scale distortion increases rapidly with increasing 
distance from the central meridian. 
 
The formulas to derive projected Easting and Northing coordinates are: 
 
 Easting, E = FE + ν[A –  TA3/6 – (8 –  T + 8C)TA5/120] 
 
 Northing, N = FN + X   
 
where X = M –  MO + νtanϕ[A2/2 + (5 –  T + 6C)A4/24] 

A = (λ –  λO)cosϕ 
 T = tan2ϕ 
 C = e2 cos2ϕ/(1 - e2)  
 ν = a /(1 –  e2sin2ϕ)0.5 
and M, the distance along the meridian from equator to latitude ϕ, is given by 
 M = a[(1 –  e2/4 –  3e4/64 –  5e6/256 –....)ϕ –  (3e2/8 + 3e4/32 + 45e6/1024 +....)sin2ϕ  
  + (15e4/256 + 45e6/1024 +.....)sin4ϕ –  (35e6/3072 + ....)sin6ϕ + .....] 
with ϕ in radians. 
 
MO is the value of M calculated for the latitude of the natural origin ϕO. This may not necessarily be chosen 
as the equator. 
 
To compute latitude and longitude from Easting and Northing the reverse formulas are: 
 ϕ = ϕ1 –  (ν1tanϕ1/ρ1)[D2/2 –  (1 + 3T1)D4/24] 
 λ =  λO + [D –  T1D3/3 + (1 + 3T1)T1D5/15]/cosϕ1 
 
where  
 ν1 = a /(1 –  e2sin2ϕ1) 0.5 

ρ1 = a(1 –  e2)/(1 –  e2sin2ϕ1) 1.5 
ϕ1 is the latitude of the point on the central meridian which has the same Northing as the point whose 
coordinates are sought, and is found from: 

 
 ϕ1 = µ1 + (3e1/2 –  27e1

3/32 +.....)sin2µ1 + (21e1
2/16 –  55e1

4/32 + ....)sin4µ1 
  + (151e1

3/96 +.....)sin6µ1 + (1097e1
4/512  –  ....)sin8µ1 + ...... 

where 
 e1 = [1 –  (1 –  e2) 0.5]/[1 + (1 –  e2) 0.5] 
 µ1 = M1/[a(1 –  e2/4 –  3e4/64 –  5e6/256 –  ....)] 
 M1 = MO + (N –  FN) 
 T1 = tan2ϕ1 
 D = (E –  FE)/ν1 
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Example  
For Projected Coordinate Reference System: Trinidad 1903 / Trinidad Grid  
 
Parameters: 

Ellipsoid: Clarke 1858 a = 20926348 ft = 31706587.88 Clarke's links 
  b = 20855233 ft   
 then  1/f = 294.2606764  e2 = 0.006785146 

  
Latitude of natural origin ϕO 10°26'30"N = 0.182241463 rad 
Longitude of natural origin λO 61°20'00"W = -1.070468608 rad 
False easting FE 430000.00 Clarke's links 
False northing FN 325000.00 Clarke's links 

 
Forward calculation for:  

Latitude ϕ = 10°00'00.00"N = 0.17453293 rad 
Longitude λ = 62°00'00.00"W = -1.08210414 rad 

 
first gives : 

A = -0.01145876  C = 0.00662550 
T = 0.03109120  M = 5496860.24 
ν = 31709831.92  MO = 5739691.12 

 
Then Easting E = 66644.94 Clarke's links 
 Northing N = 82536.22 Clarke's links 

 
Reverse calculation for same easting and northing first gives: 

e1 = 0.00170207  D = -0.01145875 
T1 = 0.03109544  M1 = 5497227.34 
ν1 = 31709832.34  µ1 = 0.17367306 
ϕ1 = 0.17454458  ρ1 = 31501122.40 

 
Then Latitude ϕ = 10°00'00.000"N 
 Longitude λ = 62°00'00.000"W 

 
 
1.3.4.1 Hyperbolic Cassini-Soldner 
(EPSG dataset coordinate operation method code 9833) 
 
The grid for the island of Vanua Levu, Fiji, uses a modified form of the standard Cassini-Soldner projection 
known as the Hyperbolic Cassini-Soldner.  
 
Easting is calculated as for the standard Cassini-Soldner above. The standard Cassini-Soldner formula to 
derive projected Northing is modified to: 
 
 Northing, N = FN + X – (X3/6ρν) 
 
where  ρ = a(1 –  e2)/(1 –  e2sin2ϕ) 1.5 and X and ν are as in the standard Cassini-Soldner above. 
 
For the reverse calculation of latitude and longitude from easting and northing the standard Cassini-Soldner 
formula given in the previous section need to be modified to account for the hyperbolic correction factor  
(X3/6ρν). Specifically for the Fiji Vanua Levu  grid the following may be used. The standard Cassini-Soldner 
formula given in the previous section are used except that the equation for M1 is modified to 

M1 = MO + (N –  FN) + q 
where 
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ϕ1' = ϕO + (N –  FN)/315320 
ρ1' = a(1 –  e2)/(1 –  e2sin2ϕ1') 1.5 
ν1' = a /(1 –  e2sin2ϕ1') 0.5 
q' = (N –  FN)3 / 6 ρ1' ν1' 
q = (N –  FN + q')3 / 6 ρ1' ν1' 

 
Example  
For Projected Coordinate Reference System: Vanua Levu 1915 / Vanua Levu Grid 
 
Parameters: 

Ellipsoid: Clarke 1880 a = 20926202 ft = 317063.667 chains 
  b = 20854895 ft   
 then  1/f = 293.4663077  e2 = 0.006803481 

  
Latitude of natural origin ϕO 16°15'00"S = -0.283616003 rad 
Longitude of natural origin λO 179°20'00"E = 3.129957125 rad 
False easting FE 12513.318 chains 
False northing FN 16628.885 chains 

 
Forward calculation for:  

Latitude ϕ =   16°50'29.2435"S = -0.293938867 rad 
Longitude λ = 179°59'39.6115"E = 3.141493807 rad 

 
first gives : 

A = 0.011041875  C = 0.006275088 
T = 0.091631819  M = -92590.02 
ν = 317154.24  MO = -89336.59 
ρ = 315176.48  X = -3259.28 

 
Then Easting E = 16015.2890 chains 
 Northing N = 13369.6601 chains 

 
Reverse calculation for same easting and northing first gives:` 

ϕ1' = 0.293952249  q' = -0.058 
ν1' = 317154.25  q = -0.058 
ρ1'  315176.50     
       
e1 = 0.001706681  D = 0.011041854 
T1 = 0.091644092  M1 = -92595.87 
ν1 = 317154.25  µ1 = -0.292540098 
ρ1 = 315176.51  ϕ1 = -0.293957437 

 
Then Latitude ϕ =   16°50'29.2435"S 
 Longitude λ = 179°59'39.6115"E 

 
 

1.3.5 Transverse Mercator  
 
1.3.5.1 General Case  
(EPSG dataset coordinate operation method code 9807) 
 
The Transverse Mercator projection in its various forms is the most widely used projected coordinate system 
for world topographical and offshore mapping. All versions have the same basic characteristics and 
formulas. The differences which distinguish the different forms of the projection which are applied in 
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different countries arise from variations in the choice of values for the coordinate conversion parameters, 
namely the latitude of the natural origin, the longitude of the natural origin (central meridian), the scale 
factor at the natural origin (on the central meridian), and the values of False Easting and False Northing, 
which embody the units of measurement, given to the origin. Additionally there are variations in the width of 
the longitudinal zones for the projections used in different territories.  
 
The following table indicates the variations in the coordinate conversion parameters which distinguish the 
different forms of the Transverse Mercator projection and are used in the EPSG dataset Transverse Mercator 
map projection operations: 
 
 

TABLE 4 
Transverse Mercator 

 
Coordinate 
Operation 
Method 
Name 

Areas used Central 
meridian 

Latitude 
of 
natural 
origin 

CM Scale 
Factor 

Zone 
width 

False 
Easting 

False 
Northing 

Transverse 
Mercator 

Various, 
world wide  

Various Various Various Usually 
less than 6° 

Various Various 

        
Transverse 
Mercator 
south 
oriented 

Southern 
Africa 

2° intervals 
E of 11°E 

0° 1.000000 2° 0m 0m 

        
UTM North 
hemisphere 

World wide 
equator to 84
°N 

6° intervals 
E & W of  
3° E & W 

Always 0° Always 
0.9996 

Always 6° 500000
m 

0m 

UTM South 
hemisphere 

World wide 
north of 80°S 
to equator 

6° intervals 
E & W of   
3° E  & W 

Always 0° Always 
0.9996 

Always 6° 500000
m 

10000000
m 

Gauss-
Kruger 

Former 
USSR, 
Yugoslavia, 
Germany, 
S. America, 
China 

Various, 
according 
to area of 
cover 

Usually 0
° 

Usually 
1.000000 

Usually 
less than 6°
, often less 
than 4° 

Various 
but 
often 
500000 
prefixed 
by zone 
number 

Various 

Gauss Boaga Italy Various Various 0.9996 6° Various 0m 
 
The most familiar and commonly used Transverse Mercator in the oil industry is the Universal Transverse 
Mercator (UTM) whose natural origin lies on the equator. However, some territories use a Transverse 
Mercator with a natural origin at a latitude of natural origin closer to that territory.   
 
In the EPSG dataset the coordinate conversion method is considered to be the same for all forms of the 
Transverse Mercator projection. The formulas to derive the projected Easting and Northing coordinates for 
the normal case (EPSG dataset coordinate operation method code 9807) are in the form of a series as 
follows: 
 
 Easting, E =  FE + kOν[A + (1 –  T + C)A3/6 + (5 –  18T + T2 + 72C –  58e' 2 )A5/120]  
 
 Northing, N =  FN + kO{M –  MO + νtanϕ[A2/2 + (5 –  T + 9C + 4C2)A4/24 +  
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    (61 –  58T + T2 + 600C – 330e' 2 )A6/720]}  
where T = tan2ϕ 
 C = e2 cos2ϕ / (1 –  e2) 
 A = (λ –  λO)cosϕ, with λ and λO in radians 
 ν = a / (1 –  e2sin2ϕ)0.5 
 M = a[(1 –  e2/4 –  3e4/64 –  5e6/256 –....)ϕ  –  (3e2/8 + 3e4/32 + 45e6/1024+....)sin2ϕ  
  + (15e4/256 + 45e6/1024 +.....)sin4ϕ  –  (35e6/3072 + ....)sin6ϕ  + .....] 
 with ϕ in radians and MO for ϕO, the latitude of the origin, derived in the same way. 
 
The reverse formulas to convert Easting and Northing projected coordinates to latitude and longitude are: 
  
 ϕ = ϕ1 –  (ν1 tanϕ1/ρ1)[D2/2 –  (5 + 3T1 + 10C1 –  4C1

2 –  9e'2)D4/24 
   + (61 + 90T1 + 298C1 + 45T1

2 –  252e'2 –  3C1
2)D6/720] 

 λ = λO + [D –  (1 + 2T1 + C1)D3/6 + (5 –  2C1 + 28T1 –  3C1
2 + 8e'2   

   + 24T1
2)D5/120] / cosϕ1 

where  
 ν1 = a /(1 –  e2sin2ϕ1) 0.5 
 ρ1 = a(1 –  e2)/(1 –  e2sin2ϕ1) 1.5 

ϕ1 may be found as for the Cassini projection from: 
   
 ϕ1 = µ1 + (3e1/2 –  27e1

3/32 +.....)sin2µ1 + (21e1
2/16 – 55e1

4/32 + ....)sin4µ1 
  + (151e1

3/96 +.....)sin6µ1 + (1097e1
4/512 –  ....)sin8µ1 + ...... 

and where 
 e1 = [1 –  (1 –  e2) 0.5]/[1 + (1 –  e2) 0.5] 
 µ1 = M1/[a(1 –  e2/4 –  3e4/64 –  5e6/256 –  ....)] 
 M1 = MO + (N –  FN)/k0 
 T1 = tan2ϕ1 
 C1 = e'2cos2ϕ1 
 e'2 = e2 /(1 – e2) 

D = (E –  FE)/(ν1kO) 
 
For areas south of the equator the value of latitude ϕ will be negative and the formulas above, to compute the 
E and N, will automatically result in the correct values. Note that the false northings of the origin, if the 
equator, will need to be large to avoid negative northings and for the UTM projection is in fact 10,000,000m. 
Alternatively, as in the case of Argentina's Transverse Mercator (Gauss-Kruger) zones, the origin is at the 
south pole with a northings of zero. However each zone central meridian takes a false easting of 500000m 
prefixed by an identifying zone number. This ensures that instead of points in different zones having the 
same eastings, every point in the country, irrespective of its projection zone, will have a unique set of 
projected system coordinates. Strict application of the above formulas, with south latitudes negative, will 
result in the derivation of the correct Eastings and Northings.  
 
Similarly, in applying the reverse formulas to determine a latitude south of the equator, a negative sign for ϕ 
results from a negative ϕ1 which in turn results from a negative M1. 
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Example 
For Projected Coordinate Reference System OSGB 1936 / British National Grid 
 
Parameters: 

Ellipsoid: Airy 1830 a = 6377563.396 metres  1/f = 299.32496 
 then  e2 = 0.00667054  e' 2 = 0.00671534 

  
Latitude of natural origin ϕO 49°00'00"N = 0.85521133 rad 
Longitude of natural origin λO   2°00'00"W = -0.03490659 rad 
Scale factor at natural origin kO 0.9996012717   
False easting FE 400000.00 metres  
False northing FN -100000.00 metres  

 
Forward calculation for:  

Latitude ϕ = 50°30'00.00"N = 0.88139127 rad 
Longitude λ = 00°30'00.00"E = 0.00872665 rad 

 
first gives : 

A = 0.02775415  C = 0.00271699 
T = 1.47160434  M = 5596050.46 
ν = 6390266.03  MO = 5429228.60 

 
Then Easting E = 577274.99 metres 
 Northing N =   69740.50 metres 

 
Reverse calculation for same easting and northing first gives: 

e1 = 0.00167322  µ1 = 0.87939562 
M1 = 5599036.80  ν1 = 6390275.88 
ϕ1 = 0.88185987  D = 0.02775243 
ρ1 = 6372980.21  C1 = 0.00271391 
T1 = 1.47441726     

 
Then Latitude ϕ = 50°30'00.000"N 
 Longitude λ = 00°30'00.000"E 

 
 
1.3.5.2 Transverse Mercator Zoned Grid System 
(EPSG dataset coordinate operation method code 9824) 
 
When the growth in distortion away from the projection origin is of concern, a projected coordinate reference 
system cannot be used far from its origin. A means of creating a grid system over a large area but also 
limiting distortion is to have several grid zones with most defining parameters being made common. 
Coordinates throughout the system are repeated in each zone. To make coordinates unambiguous the easting 
is prefixed by the relevant zone number. This procedure was adopted by German mapping in the 1930’s 
through the Gauss-Kruger systems and later by American military mapping through the Universal Transverse 
Mercator (or UTM) grid system. (Note: subsequent civilian adoption of the systems usually ignores the zone 
prefix to easting. Where this is the case the formulas below do not apply: use the standard TM formula 
separately for each zone). 
  
The parameter Longitude of natural origin (λO) is changed from being a defining parameter to a derived 
parameter, replaced by two other defining parameters, the Initial Longitude (the western limit of zone 1)     (
λI) and the Zone Width (W).  Each of the remaining four Transverse Mercator defining parameters – Latitude 
of natural origin, Scale factor at natural origin, False easting and False northing – have the same parameter 
values in every zone. 
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The standard Transverse Mercator formulas above are modified as follows: 
 
Zone number, Z, = INT((λ + λI + W) / W)  with λ, λI and W in degrees.  
where λI is the Initial Longitude of the zoned grid system 
and W is the width of each zone of the zoned grid system. 
If λ < 0, λ = (λ + 360) degrees. 
 
Then, 
   λO = [Z W] – [λI + (W/2)] 
 
For the forward calculation, 
   Easting, E =  Z*106 + FE + kO.ν [A + (1 –  T + C)A3/6 + (5 –  18T + T2 + 72C –  58e' 2 )A5/120] 
    
and in the reverse calculation for longitude,  
   D = (E – [FE + Z*106])/( ν1 kO) 
 
 
1.3.5.3 Transverse Mercator (South Orientated) 
(EPSG dataset coordinate operation method code 9808) 
 
For the mapping of southern Africa a south oriented Transverse Mercator map projection method is used. 
Here the coordinate axes are called Westings and Southings and increment to the West and South from the 
origin respectively. See Figure 3 for a diagrammatic illustration. The general case of the Transverse Mercator 
formulas given above need to be modified to cope with this arrangement with 
 
 Westing, W = FE – kO ν[A + (1 –  T + C)A3/6 + (5 – 18T + T2 + 72C – 58e' 2 )A5/120] 
 
 Southing, S = FN – kO{M –  MO + νtanϕ[A2/2 + (5 –  T + 9C + 4C2)A4/24 +  
    (61 – 58T + T2 + 600C – 330e'2)A6/720]} 
 
In these formulas the terms FE and FN retain their definition, i.e. in the Transverse Mercator (South 
Orientated) method they increase the Westing and Southing value at the natural origin. In this method they 
are effectively false westing (FW) and false southing (FS) respectively. 
 
For the reverse formulas, those for the general case of the Transverse Mercator given above apply, with the 
exception that: 
  
 M1 = MO – (S – FN)/kO 
and D =  – (W – FE)/(ν1 kO), with ν1 = ν for ϕ1 
 
Example 
For Projected Coordinate Reference System OSGB 1936 / British National Grid 
 
Parameters: 

Ellipsoid: Airy 1830 a = 6377563.396 metres  1/f = 299.32496 
 then  e2 = 0.00667054  e' 2 = 0.00671534 

  
Latitude of natural origin ϕO 0°00'00"N = 0.85521133 rad 
Longitude of natural origin λO  19°00'00"E = -0.03490659 rad 
Scale factor at natural origin kO 0.9996012717   
False westing FW 0.00 metres  
False southing FS 0.00 metres  
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Forward calculation for:  
Latitude ϕ = 50°30'00.00"S = 0.88139127 rad 
Longitude λ = 00°30'00.00"E = 0.00872665 rad 

 
first gives : 

A = 0.02775415  C = 0.00271699 
T = 1.47160434  M = 5596050.46 
ν = 6390266.03  MO = 5429228.60 

 
Then Easting E = 577274.99 metres 
 Northing N =   69740.50 metres 

 
Reverse calculation for same easting and northing first gives: 

e1 = 0.00167322  µ1 = 0.87939562 
M1 = 5599036.80  ν1 = 6390275.88 
ϕ1 = 0.88185987  D = 0.02775243 
ρ1 = 6372980.21  C1 = 0.00271391 
T1 = 1.47441726     

 
Then Latitude ϕ = 50°30'00.000"S 
 Longitude λ = 00°30'00.000"E 

 
 
 
1.3.6 Oblique Mercator and Hotine Oblique Mercator 

(EPSG datset coordinate operation method codes 9815 and 9812). 
 
It has been noted that the Transverse Mercator map projection method is employed for the topographical 
mapping of longitudinal bands of territories, limiting the amount of scale distortion by limiting the extent of 
the projection either side of the central meridian. Sometimes the shape, general trend and extent of some 
countries makes it preferable to apply a single zone of the same kind of projection but with its central line 
aligned with the trend of the territory concerned rather than with a meridian. So, instead of a meridian 
forming this true scale central line for one of the various forms of Transverse Mercator, or the equator 
forming the line for the Mercator, a line with a particular azimuth traversing the territory is chosen and the 
same principles of construction are applied to derive what is now an Oblique Mercator. Such a single zone 
projection suits areas which have a large extent in one direction but limited extent in the perpendicular 
direction and whose trend is oblique to the bisecting meridian - such as East and West Malaysia and the 
Alaskan panhandle. It was originally applied at the beginning of the 20th century by Rosenmund to the 
mapping of Switzerland, and in the 1970’s adopted in Hungary. The projection's initial line may be selected 
as a line with a particular azimuth through a single point,  normally at the centre of the mapped area, or as 
the geodesic line (the shortest line between two points on the ellipsoid) between two selected points. 
 
OGP identifies two forms of the oblique Mercator projection, differentiated only by the point at which false 
grid coordinates are defined.  If the false grid coordinates are defined at the intersection of the initial line and 
the aposphere, that is at the natural origin of the coordinate system, the map projection method is known as 
the Hotine Oblique Mercator (EPSG dataset coordinate operation method code 9812). If the false grid 
coordinates are defined at the projection centre the projection method is known as the Oblique Mercator 
(EPSG dataset coordinate operation method code 9815). 
 
Hotine projected the ellipsoid conformally onto a sphere of constant total curvature, called the ‘aposphere’, 
before projection onto the plane and then rotation of the grid to north. This projection is sometimes referred 
to as the Rectified Skew Orthomorphic. Formulas, involving hyperbolic functions, were derived by Hotine.  
Snyder adapted these formulas to use exponential functions, thus avoiding use of Hotine's hyperbolic 
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expressions.  Alternative formulas derived by projecting the ellipsoid onto the ‘conformal’ sphere give 
identical results within the practical limits of the use of the formulas. 
 
Snyder describes a variation of the Hotine Oblique Mercator where the initial line is defined by two points 
through which it passes. The latter approach is not currently followed in the EPSG dataset. It has been 
applied to mapping space imagery or, more frequently, for applying a geographical graticule to the imagery. 
However, the repeated path of the imaging satellite does not actually follow the centre lines of successive 
oblique cylindrical projections so a projection was derived whose centre line does follow the satellite path. 
This is known as the Space Oblique Mercator Projection and although it closely resembles an oblique 
cylindrical it is not quite conformal and has no application other than for space imagery. 
 
The Oblique Mercator co-ordinate system is defined by: 
 
 
 

 
 

Figure 7.  Key Diagram for Oblique Mercator Projection   
 
The initial line central to the map area of given azimuth  αC  passes through a defined centre of the projection 
(ϕC, λC ) . The point where the projection of this line cuts the equator on the aposphere is the origin of the (u , 
v) co-ordinate system. The u axis is along the initial line and the v axis is perpendicular to (90° clockwise 
from) this line. 
 
In applying the formulas for the (Hotine) Oblique Mercator the first set of co-ordinates computed are 
referred to the (u, v) co-ordinate axes defined with respect to the initial line. These co-ordinates are then 
‘rectified’ to the usual Easting and Northing by applying an orthogonal conversion. Hence the alternative 
name as the Rectified Skew Orthomorphic. The angle from rectified to skewed grid  may be defined such 
that grid north coincides with true north at the natural origin of the projection, that is where the initial line of 
the projection intersects equator on the aposphere.  In some circumstances, particularly where the projection 
is used in non-equatorial areas such as the Alaskan panhandle, the angle from rectified to skewed grid is 
defined to be identical to the azimuth of the initial line at the projection centre; this results in grid and true 
north coinciding at the projection centre rather than at the natural origin. 
 
To ensure that all co-ordinates in the map area have positive grid values, false co-ordinates are applied. 
These may be given values (EC , NC) if applied at the projection centre [EPSG dataset Oblique Mercator 
method] or be applied as false easting (FE) and false northing (FN) at the natural origin [EPSG dataset  
Hotine Oblique Mercator method]. 
  
The formulas can be used for the following cases: 
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 Alaska State Plane Zone 1 
 Hungary EOV 
 East and West Malaysia Rectified Skew Orthomorphic grids 
 Swiss Cylindrical projection 
  
The Swiss and Hungarian systems are a special case where the azimuth of the line through the projection 
centre is 90 degrees. 
The formulas may also be used as an approximation to the Laborde Grid for Madagscar (see following 
section). 
 
Specific references for the formulas originally used in the individual cases of these projections are: 
Switzerland:   "Die Änderung des Projektionssystems der schweizerischen Landesvermessung." M. 

Rosenmund 1903.  Also "Die projecktionen der Schweizerischen Plan und Kartenwerke." J. 
Bollinger 1967. 

Madagascar:   "La nouvelle projection du Service Geographique de Madagascar". J. Laborde 1928. 
Malaysia:   Series of Articles in numbers 62-66 of the Empire Survey Review of 1946 and 1947 by M. 

Hotine. 
 
 
The defining parameters for the [Hotine] Oblique Mercator projection are: 

ϕC  = latitude of the projection centre 
λC  = longitude of the projection centre 
αC  = azimuth (true) of the initial line passing through the projection centre 
γC  = angle from the rectified grid to the skew (oblique) grid 
kC = scale factor on the initial line of the projection 

and either 
for the Oblique Mercator: 

EC = False Easting at the centre of projection 
NC = False Northing at the centre of projection 

or for the Hotine Oblique Mercator: 
FE = False Easting at the natural origin 
FN = False Northing at the natural origin 

 
From these defining parameters the following constants for the map projection may be calculated for both 
the Hotine Oblique Mercator and Oblique Mercator methods: 
 
B  =  {1 + [e2 cos4ϕC / (1 –  e2 )]} 0.5 
A = a B kC (1 –  e2 )0.5 / (1 –  e2 sin2 ϕC) 
tO = tan(π/4 – ϕC / 2) / [(1 –  e sin ϕC) / (1 + e sin ϕC)] e/2 
D = B (1 – e2 )0.5  / [cos ϕC (1 – e2 sin2 ϕC)0.5] 
To avoid problems with computation of F, if D < 1 make D2  = 1 
F = D + (D2 – 1) 0.5 . SIGN(ϕC) 
H = F tO

B 
G = (F – 1/F) / 2 
γO = asin[sin (αC) / D] 
λO = λC – [asin(G tanγO)] / B 
 
Then for the Oblique Mercator method only, two further constants for the map projection, the (uC , vC) co-
ordinates for the centre point (ϕC , λC), are calculated from:   
vC = 0 
 
In general 
uC = (A / B) atan[(D2 – 1)0.5 / cos (αC) ] * SIGN(ϕC) 
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but for the special cases where αc = 90 degrees (e.g. Hungary, Switzerland) then  
uC = A (λC – λO)   
 
 
Forward case: To compute (E,N) from a given (ϕ,λ), for both the Hotine Oblique Mercator method and the 
Oblique Mercator method: 
 
t = tan(π / 4 –  ϕ / 2) / [(1 – e sin ϕ) / (1 + e sin ϕ)]e/2 
Q = H / tB 

S = (Q – 1/Q) / 2 
T = (Q + 1/Q) / 2 
V = sin(B (λ –  λ O)) 
U = (– V cos(γO) + S sin(γO)) / T 
v = A ln[(1 – U) / (1 + U)] / (2 B) 
 
Then either 
(a) for the Hotine Oblique Mercator (where the FE and FN values have been specified with respect to the 
natural origin of the (u , v) axes): 
u = A atan{(S cosγO + V sinγO) / cos[B (λ – λO)]} / B 
 
The rectified skew co-ordinates are then derived from: 
E = v cos(γC) + u sin(γC) + FE 
N  = u cos(γC) – v sin(γC) + FN 
 
or  
(b) for the Oblique Mercator (where the false easting and northing values (EC , NC) have been specified with 
respect to the centre of the projection (ϕC , λC) then : 
u  =  (A atan{(S cosγO + V sinγO) / cos[B (λ – λO)]} / B) – (ABS(uC) * SIGN(ϕC)) 
 
The rectified skew co-ordinates are then derived from: 
E = v cos(γC) + u sin(γC) + EC 
N  = u cos(γC) – v sin(γC) + NC 
 
 
Reverse case: To compute (ϕ,λ)  from a given (E,N)  : 
 
For the Hotine Oblique Mercator: 
v' = (E – FE) cos(γC) – (N – FN) sin(γC) 
u' = (N – FN) cos(γC) + (E - FE) sin(γC) 
 
or for the Oblique Mercator: 
v' = (E – EC) cos(γC) – (N – NC) sin(γC) 
u' = (N – NC) cos(γC) + (E – EC) sin(γC) + (ABS(uC ) * SIGN(ϕC) 
 
then for both cases: 
Q' = e- (B v '/ A)  where e is the base of natural logarithms. 
S' = (Q' – 1 / Q') / 2 
T' = (Q' + 1 / Q') / 2 
V' = sin (B u' / A) 
U' = (V' cos(γO) + S' sin(γO)) / T' 
t' = {H / [(1 + U') / (1 – U')]0.5}1 / B 
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χ =  π / 2 – 2 atan(t') 
 
ϕ =  χ + sin(2χ) (e2 / 2 + 5 e4 / 24 + e6 / 12 + 13 e8 / 360)  

+ sin(4χ) (7 e4 /48 + 29 e6 / 240 + 811 e8 / 11520)  
+  sin(6χ) (7 e6 / 120 + 81 e8 / 1120) + sin(8χ) (4279 e8 / 161280) 

 
λ =   λO – atan [(S' cosγO – V' sinγO) / cos(B u' / A)] / B 
 
Examples: 
For Projected Coordinate Reference System  Timbalai 1948 / R.S.O. Borneo (m) using the Oblique Mercator 
method: (EPSG dataset coordinate operation method code 9815). 
 
Parameters: 

Ellipsoid: Everest 1830 (1967 Definition) a = 6377298.556 metres  1/f = 300.8017 
 then  e = 0.081472981  e2 = 0.006637847 

  
Latitude of projection centre ϕC     4°00'00"N = 0.069813170 rad 
Longitude of projection centre λC 115°00'00"E = 2.007128640 rad 
Azimuth of initial line αC 53°18'56.9537" = 0.930536611 rad 
Angle from Rectified to Skew 
Grid 

γC 53°07'48.3685" = 0.927295218 rad 

Scale factor on initial line kC 0.99984   
Easting at projection centre EC 590476.87 metres 
Northings at projection centre NC 442857.65 metres 

 
Constants for the map projection: 

B = 1.003303209  F = 1.072121256 
A = 6376278.686  H = 1.000002991 
tO = 0.932946976  γO = 0.927295218 
D = 1.002425787  λO = 1.914373469 
D2 = 1.004857458     
uc = 738096.09  vc = 0.00 

 
Forward calculation for:  

Latitude ϕ =    5°23'14.1129"N = 0.094025313 rad 
Longitude λ = 115°48'19.8196"E = 2.021187362 rad 

 
first gives : 

t = 0.910700729  Q = 1.098398182 
S = 0.093990763  T = 1.004407419 
V = 0.106961709  U = 0.010967247 
v = -69702.787  u = 163238.163 

 
Then Easting E = 679245.73 metres 
 Northing N = 596562.78 metres 

 
Reverse calculation for same easting and northing first gives: 

v' = -69702.787  u' = 901334.257 
Q' = 1.011028053     
S' = 0.010967907  T' = 1.000060146 
V' = 0.141349378  U' = 0.093578324 
t' = 0.910700729  χ = 0.093404829 

 
Then Latitude ϕ =    5°23'14.113"N 
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 Longitude λ = 115°48'19.820"E 
 
If the same projection is defined using the Hotine Oblique Mercator method then: 

False easting FE = 0.0 metres 
False northing FN = 0.0 metres 

Then u = 901334.257 
and all other values are as for the Oblique Mercator method. 
 
 
1.3.6.1 Laborde projection for Madagascar 

(EPSG datset coordinate operation method code 9813). 
 
For the mapping of Madagascar, Laborde developed a grid based on an oblique cylindrical conformal 
projection similar to the Oblique Mercator. Like Hotine's development for the Oblique Mercator, Laborde 
used a triple projection technique to map the ellipsoid to the plane. But in the Laborde projection the rotation 
to north is made on the intermediate conformal sphere rather than in the projection plane. Within 450 
kilometres of the projection origin near Antananarivo, Laborde's formulas can be approximated to better than 
2cm by the Oblique Mercator method described above, which is satisfactory for most purposes. However, 
beyond these limits, particularly in the direction along the initial line, results from the Oblique Mercator 
formulae diverge rapidly from those given by Laborde's formulas, so that at 600 kilometres from the origin 
along the initial line the Oblique Mercator approximates Laborde's formulas to no better than 1 metre. 
 
The defining parameters for the Laborde Madagascar projection are: 

ϕC  = latitude of the projection centre 
λC  = longitude of the projection centre 
αC  = azimuth (true) of the initial line passing through the projection centre 
kC = scale factor on the initial line of the projection 
FE = False Easting at the natural origin 
FN = False Northing at the natural origin 

 
(Note: if the Oblique Mercator method is used as an approximation to the Laborde Madagascar, the 
additional parameter required by that method, the angle from the rectified grid to the skew (oblique) grid γC,  
takes the same value as the azimuth of the initial line passing through the projection centre, i.e. γC = αC) 
 
All angular units should be converted to radians prior to use and all longitudes reduced to the Paris Meridan 
using the Paris Longitude of 2.5969212963 grads (2° 20’ 14.025”E) east of Greenwich. 
 
From these defining parameters the following constants for the map projection may be calculated: 
 
B = {1+[e2 cos4ϕC]/(1– e2)}0.5 
ϕs = asin[sinϕC / B] 
R = a  kC {(1–e2)0.5 / [1–e2 sin2ϕC]} 
C = ln[tan(π/4+ϕs /2)] – B. ln{tan(π/4+ϕc /2) ([1 – e sinϕc]/[1+e sinϕc])(e/2)} 
 
Forward case: To compute (E,N) from a given (ϕ,λ) 
L = B.(λ–λC) 
q = C + B . ln{tan(π/4+ϕ/2) ([1–e sinϕ] / [1+e sinϕ])(e/2)} 
P = 2.atan(e q) – π/2    where e is the base of natural logarithms. 
U = cosP.cosL.cosϕs + sinP.sinϕs  
V = cosP.cosL.sinϕs  – sinP.cosϕs 
W = cosP.sinL 
d = (U2+V2)0.5 
if d <> 0 then L' = 2.atan(V/(U+d)) and P' = atan(W/d) 
if d = 0 then L' = 0 and P' = sign(W). π/2 
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H = –L' + i.ln(tan(π/4+P'/2))                 where i2 = –1 
G = (1 – cos(2.αC) + i.sin(2.αC))/12 
E = EC + R . IMAGINARY(H+G.H3) 
N = NC + R . REAL(H + G.H3) 
 
Reverse case: To compute (ϕ,λ) from a given (E,N): 
G = (1–cos(2.αC) + i.sin(2.αC))/12   where i2 = –1 
 
To solve for Latitude and Longitude, a re-iterative solution is required, where the first two elements are 
H0 = (N–FN)/R + i.(E–FE)/R  ie k = 0 
H1 = H0/(H0 + G.H0

3), i.e. k = 1, 
and in subsequent reiterations, k increments by 1 
Hk+1 = (H0+2.G.Hk

3)/(3.G.Hk
2+1) 

Re-iterate until ABSOLUTE(REAL([H0-Hk-G.Hk
3)])) < 1E-11 

 
L' = –1.REAL(Hk) 
P' = 2.atan(e IMAGINARY(Hk)) – π/2   where e is the base of natural logarithms. 
U' = cosP'.cosL'.cosϕs + cosP'.sinL'.sinϕs    
V' = sinP'  
W' = cosP'.cosL'.sinϕs – cosP'.sinL'.cosϕs 
d = (U'2+ V'2)0.5 
if d <> 0 then L = 2 atan[V'/( U'+d)] and P = atan(W'/d) 
if d = 0   then L = 0 and P = SIGN(W') . π/2 
λ = λC + (L/B) 
 
q' = {ln[tan(π/4+P/2)] – C}/B 
The final solution for latitude requires a second re-iterative process, where the first element is 
ϕ'0 = 2.atan(e q') – π/2  where e is the base of natural logarithms. 
And the subsequent elements are  
ϕ'k = 2.atan{({1+e.sin[ϕ'k-1]} / {1–e.sin[ϕ'k-1]})(e/2). e q'} – π/2  for k = 1 → 
Iterate until ABSOLUTE(ϕ'k- ϕ'k-1)  < 1E-11 
ϕ = ϕ'k 
 
 
Example: 
For Projected Coordinate Reference System Tananarive (Paris) / Laborde Grid. 
 
Parameters: 

Ellipsoid: International 1924 a = 6378388 metres  1/f = 297 
 then  e = 0.081991890  e2 = 0.006722670 

  
Latitude of projection centre ϕC 21 grads S = -0.329867229 rad 
Longitude of projection 
centre 

λC 49 grads E of Paris = 51.5969213 grads E of Greenwich 

   = 0.810482544 rad 
Azimuth of initial line αC 21 grads = 0.329867229 rad 
Scale factor on initial line kC 0.9995   
Easting at projection centre EC 400000 metres 
Northings at projection 
centre 

NC 800000 metres 

 
Constants for the map projection: 

B = 1.002707541  ϕs = -0.328942879 
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R = 6358218.319  C = -0.0002973474 
 
 
Forward calculation for:  

Latitude ϕ = 16°11'23.280"S  
17.9886666667 grads S 

 
= 

 
-0.282565315 rad 

Longitude λ = 44°27'27.260"E of Greenwich 
46.800381173 grads E of Paris 

 
= 

 
0.735138668 rad 

 
first gives : 
L = -0.034645081  q = -0.285595283  P = -0.281790207 
U = 0.998343010  V = -0.046948995  W = -0.033271994 
d = 0.999446334  L' = -0.046992297  P' = -0.033278135 
H = 0.046992297 - 

0.033284279i 
 G = 0.017487082 + 

0.051075588i 
    

 
 

Then Easting E =   188333.848 metres 
 Northing N = 1098841.091 metres 

 
Reverse calculation for same easting and northing first gives: 

G = 0.017487082 + 
0.051075588i 

 H0 = 0.047000760 - 
0.033290167i 

 H1 = 0.999820949 - 
0.000001503i 

Hk = 0.046992297 -  
0.033284279i 

 L' = -0.046992297  P' = -0.033278136 

U' = 0.959982752  V' = -0.033271994  W' = -0.278075693 
d = 0.960559165  L = -0.3464508142  P = -0.281790207 
q' = -0.284527565  ϕ'0 = -0.280764449     

 
Then Latitude ϕ = -0.282565315 rad = 

= 
17.9886666667 grads S 
16°11'23.280"S 

 Longitude λ = 0.735138668 rad = 
= 

46.8003811733 grads East of Paris 
44°27'27.260"E of Greenwich 

 
 
Comparing the Oblique Mercator method as an approximation of the full Laborde formula: 
 

  Using Laborde formula Using Oblique Mercator   
Latitude Greenwich

Longitude 
Northing X Easting Y Northing X Easting Y dX 

(m) 
dY 
(m) 

18°54'S 47°30'E 799665.521 511921.054 799665.520 511921.054 0.00 0.00 
16°12'S 44°24'E 1097651.447 182184.982 1097651.426 182184.985 0.02 0.00 
25°40'S 45°18'E 50636.222 285294.334 50636.850 285294.788 0.63 0.45 
12°00'S 49°12'E 1561109.146 701354.056 1561109.350 701352.935 0.20 1.12 

 
 
1.3.7 Stereographic 
 
The Stereographic projection may be imagined to be a projection of the earth's surface onto a plane in 
contact with the earth at a single tangent point from a projection point at the opposite end of the diameter 
through that tangent point.  
 
This projection is best known in its polar form and is frequently used for mapping polar areas where it 
complements the Universal Transverse Mercator used for lower latitudes. Its spherical form has also been 
widely used by the US Geological Survey for planetary mapping and the mapping at small scale of 
continental hydrocarbon provinces. In its transverse or oblique ellipsoidal forms it is useful for mapping 
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limited areas centred on the point where the plane of the projection is regarded as tangential to the ellipsoid., 
e.g. the Netherlands. The tangent point is the origin of the projected coordinate system and the meridian 
through it is regarded as the central meridian. In order to reduce the scale error at the extremities of the 
projection area it is usual to introduce a scale factor of less than unity at the origin such that a unitary scale 
factor applies on a near circle centred at the origin and some distance from it.  
 
The coordinate conversion from geographic to projected coordinates is executed via the distance and azimuth 
of the point from the centre point or origin. For a sphere the formulas are relatively simple. For the ellipsoid 
the parameters defining the conformal sphere at the tangent point as origin are first derived. The conformal 
latitudes and longitudes are substituted for the geodetic latitudes and longitudes of the spherical formulas for 
the origin and the point. 
 
An alternative approach is given by Snyder, where, instead of defining a single conformal sphere at the 
origin point, the conformal latitude at each point on the ellipsoid is computed.  The conformal longitude is 
then always equivalent to the geodetic longitude.  This approach is a valid alternative to that given here, but 
gives slightly different results away from the origin point. The USGS formula is therefore considered by 
OGP to be a different coordinate operation method to that described here. 
 
1.3.7.1 Oblique and Equatorial Stereographic cases  
(EPSG dataset coordinate operation method code 9809) 
 
Given the geodetic origin of the projection at the tangent point (ϕo, λo), the parameters defining the 
conformal sphere are: 
 
 R =  ( ρo  νo)0.5 

      n =  {1+[(e2 cos4ϕo) / (1 – e2)]}0.5 

 c =  (n + sinϕo) (1 – sinχO) / [(n – sinϕO) (1 + sin(χO)] 
 
where: sin χO = (w1 – 1) / (w1 + 1) 

w1 = [S1 (S2)e]n 
 S1 = (1 + sinϕO)/(1 – sinϕO) 
 S2 = (1 – e sinϕO)/(1 + e sinϕ O) 
 
The conformal latitude and longitude of the origin (χO, ΛO) are then computed from : 
 
 χO = sin-1 [(w2 – 1)/( w2 + 1)] 
 
 where S1 and S2 are as above and w2 = c [S1 (S2) e]n  = c w1 
  
  ΛO  = λO 
 
For any point with geodetic coordinates (ϕ,λ) the equivalent conformal latitude and longitude  
( χ , Λ ) are then computed from 
 
 Λ = n( λ –  ΛO ) + ΛO 
and 
 χ = sin-1 [(w – 1)/(w + 1)] 
 
where  w = c [Sa (Sb) e]n 
 Sa = (1 + sinϕ) / (1 – sinϕ) 
 Sb = (1 – e.sinϕ) / (1 + e.sinϕ) 
  
Then 
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 E = FE + 2 R kO cosχ sin(Λ –  Λ0 ) / B 
and 
 N = FN + 2 R kO [sinχ cosχO – cosχ sinχO cos(Λ – ΛO )] / B 
 
where B = [1+sinχ sinχO + cosχ cosχO cos(Λ – ΛO )] 
 
 
The reverse formulas to compute the geodetic coordinates from the grid coordinates involves computing the 
conformal values, then the isometric latitude and finally the geodetic values. 
 
The parameters of the conformal sphere and conformal latitude and longitude at the origin are computed as 
above. Then for any point with Stereographic grid coordinates (E,N) : 
 
 χ = χO + 2 tan-1{[(N – FN) – (E – FE) tan (j/2)] / (2 RkO)} 
 
 Λ = j + 2 i + ΛO 
 
where g = 2 RkO tan (π/4 – χO/ 2 ) 
 h = 4 RkO tan χO + g 
 i = tan-1 {(E – FE) / [h + (N – FN)]} 
 j = tan-1 {(E – FE) / [g – (N – FN)]} - i 
 
Geodetic longitude  λ = (Λ – ΛO ) / n + ΛO 
 
Isometric latitude ψ = 0.5 ln {(1 + sinχ) / [ c (1 – sinχ)]} / n 
 
First approximation  ϕ1 = 2 tan-1 eΨ  – π / 2    where e=base of natural logarithms. 
 
   ψi = isometric latitude at ϕi 
 
where   ψi= ln{[tan(ϕi/2 +π/4)]  [(1 – e sinϕi)/(1 + e sinϕi)]

(e/2)} 
  
Then iterate  ϕi+1 = ϕi – ( ψi – ψ ) cos ϕi ( 1 – e2 sin2ϕi) / (1 – e2) 
 
until the change in  ϕ   is sufficiently small. 
 
 
If the projection is the equatorial case, ϕO and χO will be zero degrees and the formulas are simplified as a 
result, but the above formulas remain valid. 
 
For the polar version, ϕO and χO will be 90 degrees and the formulas become indeterminate.  See below for 
formulas for the polar case. 
 
For stereographic projections centred on points in the southern hemisphere, the signs of E, N, λO and λ must 
be reversed to be used in the equations and ϕ will be negative anyway as a southerly latitude. 
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Example: 
For Projected Coordinate Reference System: Amersfoort / RD New 
 
Parameters: 

Ellipsoid: Bessel 1841 a = 6377397.155 metres  1/f = 299.15281 
 then  e = 0.08169683   

    
Latitude of natural origin ϕO 52°09'22.178"N = 0.910296727 rad 
Longitude of natural origin λO   5°23'15.500"E = 0.094032038 rad 
Scale factor at natural origin kO 0.9999079   
False easting FE 155000.00 metres  
False northing FN 463000.00 metres  

 
Forward calculation for:  

Latitude ϕ = 53°N = 0.925024504 rad 
Longitude λ =   6°E = 0.104719755 rad 

 
 first gives the conformal sphere constants: 
 
  ρO = 6374588.71 νO = 6390710.613  
 R = 6382644.571  n   = 1.000475857  c  = 1.007576465 
 
where  S1 = 8.509582274 S2 = 0.878790173  w1 = 8.428769183 
 sin χO = 0.787883237      
 
 w2  = 8.492629457    χO = 0.909684757  ΛO = λO = 0.094032038 rad 
 
For the point (ϕ,λ)  χ  = 0.924394997  Λ   = 0.104724841 rad 
 
hence  B = 1.999870665 
and  E = 196105.283 m N = 557057.739 m  
 
 
Reverse calculation for the same Easting and Northing  (196105.28E, 557057.74N) first gives: 
 
g = 4379954.188       h = 37197327.960 i = 0.001102255     j = 0.008488122 
 
then  Λ  = 0.10472467   whence λ = 0.104719584 rad =  6°E 
 
Also χ  = 0.924394767     and ψ = 1.089495123 
Then ϕ1 = 0.921804948 ψ1 = 1.084170164 
 ϕ2 = 0.925031162 ψ2 = 1.089506925 
 ϕ3 = 0.925024504 ψ3 = 1.089495505 
 ϕ4 = 0.925024504 
 

Then Latitude ϕ = 53°00'00.000"N 
 Longitude λ =   6°00'00.000"E 

 
 
1.3.7.2 Polar Stereographic 
 
For the polar sterographic projection, three variants are recognised, differentiated by their defining 
parameters. In the basic variant (variant A) the latitude of origin is either the north or the south pole, at 
which is defined a scale factor at the natural origin, the meridian along which the northing axis increments 



OGP Surveying and Positioning Guidance Note number 7, part 2 –  November2009 
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org. 

 

Page 53 of 120 

and along which intersecting parallels increment towards the north pole (the longitude of origin), and false 
grid coordinates. In variant B instead of the scale factor at the pole being defined, the (non-polar) latitude at 
which the scale is unity – the standard parallel – is defined. In variant C the latitude of a standard parallel 
along which the scale is unity is defined; the intersection of this parallel with the longitude of origin is the 
false origin, at which grid coordinate values are defined. 
 
 Method 
Parameter Variant A Variant B Variant C 
Latitude of natural origin (ϕO) (note 1) (note 2) (note 2) 
Latitude of standard parallel (ϕF)  x x 
Longitude of origin (λO) x x x 
Scale at natural origin (kO) x   
False easting (easting at natural origin = pole) (FE) x x  
False northing (northing at natural origin = pole) (FN) x x  
Easting at false origin (EF)   x 
Northing at false origin (NF)   x 
 
In all three variants the formulae for the south pole case are straightforward but some require modification 
for the north pole case to allow the longitude of origin going towards (as opposed to away from) the natural 
origin and for the anticlockwise increase in longitude value when viewed from the north pole (see figure 8). 
Several equations are common between the variants and cases. 
 
Notes:  
1. In variant A the parameter Latitude of natural origin is used only to identify which hemisphere case is 
required. The only valid entries are ±90° or equivalent in alternative angle units.  
2. For variants B and C, whilst it is mathematically possible for the standard parallel to be in the opposite 
hemisphere to the pole at which is the projection natural origin, such an arrangement would be unsatisfactory 
from a cartographic perspective as the rate of change of scale would be excessive in the area of interest. The 
EPSG dataset therefore excludes the hemisphere of pole as a defining parameter for these variants. In the 
formulas that follow for these variants B and C, the hemisphere of pole is taken to be that of the hemisphere 
of the standard parallel. 
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Figure 8.  Key Diagram for Stereographic Projection   

 
 
Polar Stereographic (Variant A) (EPSG dataset coordinate operation method code 9810). 
 
For the forward conversion from latitude and longitude, for the south pole case 
 dE = ρ sin (θ) 
 and  

dN = ρ cos (θ) 
where θ = (λ – λO) 
 
Then  
 E = dE + FE = FE + ρ sin (λ – λO) 
 N= dN + FN = FN + ρ cos (λ – λO) 
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where 
 t  = tan (π/4 + ϕ/2) / {[(1 + e sinϕ) / (1 – e sinϕ)](e/2)} 

ρ = 2 a kO t / {[(1+e)(1+e) (1–e)(1–e)]0.5} 
 
For the north pole case,  

dE = ρ sin (θ)  = ρ sin (ω) 
dN = ρ cos (θ) = – ρ cos (ω) 

where, as shown in figure 8, ω = longitude λ measured anticlockwise in the projection plane. 
 
ρ and E are found as for the south pole case but 

t  = tan (π/4 – ϕ/2) {[(1 + e sinϕ) / (1 – e sinϕ)](e/2)} 
N = FN – ρ cos (λ – λO) 

 
For the reverse conversion from easting and northing to latitude and longitude, 
 ϕ = χ  + (e2/2 + 5e4/24 + e6/12 + 13e8/360) sin(2χ)  
  + (7e4/48 + 29e6/240 + 811e8/11520) sin(4χ) 
  + (7e6/120 +  81e8/1120) sin(6χ)  + (4279e8/161280) sin(8χ) 
 
where  ρ'  = [(E – FE)2  + (N – FN)2] 0.5 

 t'   =  ρ' {[(1+e)(1+e) (1– e)(1-e) ] 0.5} / 2 a kO 
and for the south pole case 

χ  = 2 atan(t' )  –  π/2  
but for the north pole case 

χ  =  π/2 – 2 atan t' 
  
Then for both north and south cases if E = FE, λ = λO 
else for the south pole case 

λ = λO + atan [(E – FE) / (N – FN)] 
and for the north pole case 

λ = λO + atan [(E – FE) / –(N – FN)] = λO + atan [(E – FE) / (FN – N)] 
 
Example: 
For Projected Coordinate Reference System: WGS 84 / UPS North 
 
Parameters: 

Ellipsoid: WGS 84 a = 6378137.0 metres  1/f = 298.2572236 
 then  e = 0.081819191   

    
Latitude of natural origin ϕO 90°00'00.000"N = 1.570796327 rad 
Longitude of natural origin λO 0°00'00.000"E = 0.0 rad 
Scale factor at natural origin kO 0.994   
False easting FE 2000000.00 metres  
False northing FN 2000000.00 metres  

 
Forward calculation for:  

Latitude ϕ = 73°N = 1.274090354 rad 
Longitude λ = 44°E = 0.767944871 rad 

 
 t  = 0.150412808 
 ρ = 1900814.564 
whence   
 E = 3320416.75 m  
 N = 632668.43 m  
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Reverse calculation for the same Easting and Northing (3320416.75 E, 632668.43 N) first gives: 
 ρ' = 1900814.566 
 t'  = 0.150412808 
 χ = 1.2722090 
 

Then Latitude ϕ = 73°00'00.000"N 
 Longitude λ = 44°00'00.000"E 

 
 
Polar Stereographic (Variant B) (EPSG dataset coordinate operation method code 9829). 
 
For the forward conversion from latitude and longitude: 
for the south pole case 

tF  = tan (π/4 + ϕF/2) / {[(1 + e sinϕF) / (1 – e sinϕF)](e/2)} 
mF = cos ϕF  / (1 – e2 sin2ϕF)0.5 

kO = mF {[(1+e)(1+e) (1–e)(1–e)]0.5} / (2*tF) 
then t, ρ, E and N are found as in the south pole case of variant A. 
 
For the north pole case, mF and kO are found as for the south pole case above, but 

tF  =  tan (π/4 – ϕF/2) {[(1 + e sinϕF) / (1 – e sinϕF)](e/2)} 
Then t, ρ, E and N are found as in variant A. 
 
For the reverse conversion from easting and northing to latitude and longitude, first kO is found from mF and 
tF as in the forward conversion above, then ϕ and λ are found as for variant A. 
 
 
Example: 
For Projected Coordinate Reference System: WGS 84 / Australian Antarctic Polar Stereographic 
 
Parameters: 

Ellipsoid: WGS 84 a = 6378137.0 metres  1/f = 298.2572236 
 then  e = 0.081819191   

    
Latitude of standard parallel ϕF 71°00'00.000"S = -1.239183769 rad 
Longitude of origin λO 70°00'00.000"E =  1.221730476 rad 
False easting FE 6000000.00 metres  
False northing FN 6000000.00 metres  

 
Forward calculation for:  

Latitude ϕ =   75°00'00.000"S = -1.308996939 rad 
Longitude λ = 120°00'00.000"E = 2.094395102 rad 

 
 tF  = 0.168407325 
 mF = 0.326546781 
 kO = 0.97276901 
 t  = 0.132508348 
 ρ = 1638783.238 
whence   
 E = 7255380.79 m  
 N = 7053389.56 m  
 
Reverse calculation for the same Easting and Northing (7255380.79 E, 7053389.56 N) first gives: 
 tF  = 0.168407325       mF = 0.326546781      and  kO = 0.97276901  
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then  ρ' = 1638783.236          t'  = 0.132508347               χ = -1.3073146 
 

Then Latitude ϕ =   75°00'00.000"S 
 Longitude λ = 120°00'00.000"E 

 
 
Polar Stereographic (Variant C) (EPSG dataset coordinate operation method code 9830). 
 
For the forward conversion from latitude and longitude, for the south pole case 
 E = EF + ρ sin (λ – λO) 
 N = NF – ρF + ρ cos (λ – λO) 
where 

mF is found as in variant B = cos ϕF  / (1 – e2 sin2ϕF)0.5 

tF is found as in variant B = tan (π/4 + ϕF/2) / {[(1 + e sinϕF) / (1 – e sinϕF)](e/2)} 
t  is found as in variants A and B = tan (π/4 + ϕ/2) / {[(1 + e sinϕ) / (1 – e sinϕ)](e/2)} 
ρF = a mF 

ρ = ρF t / tF 

 
For the north pole case, mF, ρF, ρ and E are found as for the south pole case but 
 tF is found as in variant B = tan (π/4 – ϕF/2) {[(1 + e sinϕF) / (1 – e sinϕF)](e/2)} 

t is found as in variants A and B =  tan (π/4 – ϕ/2) {[(1 + e sinϕ) / (1 – e sinϕ)](e/2)} 
 N = NF + ρF – ρ cos (λ – λO) 
 
 
For the reverse conversion from easting and northing to latitude and longitude, 
 ϕ = χ  + (e2/2 + 5e4/24 + e6/12 + 13e8/360) sin(2χ)  
  + (7e4/48 + 29e6/240 + 811e8/11520) sin(4χ) 
  + (7e6/120 +  81e8/1120) sin(6χ)  + (4279e8/161280) sin(8χ) 
(as for variants A and B) 
 
where for the south pole case 

ρ' = [(E-EF)2  + (N – NF + ρF)2] 0.5 

 t'   =  ρ' tF / ρF 
χ  = 2 atan(t') – π/2 

and where mF and tF are as for the forward conversion 
 
For the reverse conversion north pole case, mF, tF and ρF are found as for the north pole case of the forward 
conversion, and 

ρ' = [(E-EF)2  + (N – NF – ρF)2] 0.5 
 t' is found as for the south pole case of the reverse conversion = ρ' tF / ρF 

χ  =  π/2 – 2 atan t' 
 
Then for for both north and south pole cases  
if E = EF, λ = λO 
else for the south pole case 

λ = λO + atan [(E – EF) / (N – NF + ρF)] 
and for the north pole case 

λ = λO + atan [(E – EF) / –(N – NF – ρF)] = λO + atan [(E – EF) / (NF + ρF – N)] 
 
 



OGP Surveying and Positioning Guidance Note number 7, part 2 –  November2009 
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org. 

 

Page 58 of 120 

Example: 
For Projected Coordinate Reference System: Petrels 1972 / Terre Adelie Polar Stereographic 
 
Parameters: 

Ellipsoid: International 1924 a = 6378388.0 metres  1/f = 297.0 
 then  e = 0.081991890   

    
Latitude of false origin ϕF   67°00'00.000"S = -1.169370599 rad 
Longitude of origin λO 140°00'00.000"E =  2.443460953 rad 
Easting at false origin EF 300000.00 metres  
Northing at false origin NF 200000.00 metres  

 
Forward calculation for:  

Latitude ϕ =   66°36'18.820"S = -1.162480524 rad 
Longitude λ = 140°04'17.040"E = 2.444707118 rad 

 
 mF = 0.391848769 
 ρF = 2499363.488 
 tF  = 0.204717630 
 t  = 0.208326304 
 ρ = 2543421.183 
whence   
 E = 303169.52 m  
 N = 244055.72 m  
 
Reverse calculation for the same Easting and Northing (303169.522 E, 244055.721 N) first gives: 
 ρ' = 2543421.183 
 t'  = 0.208326304 
 χ = -1.1600190 
 

Then Latitude ϕ =   66°36'18.820"S 
 Longitude λ = 140°04'17.040"E 

 
 
1.3.8 New Zealand Map Grid 
(EPSG dataset coordinate operation method code 9811) 
 
This projection system typifies the recent development in the design and formulation of map projections 
where, by more complex mathematics yielding formulas readily handled by modern computers, it is possible 
to maintain the conformal property and minimise scale distortion over the total extent of a country area 
regardless of shape. Thus both North and South Islands of New Zealand, previously treated not very 
satisfactorily in two zones of a Transverse Mercator projection, can now be projected as one zone of what 
resembles most closely a curved version Oblique Mercator but which, instead of being based on a minimum 
scale factor straight central line, has a central line which is a complex curve roughly following the trend of 
both North and South Islands. The projected coordinate reference system achieves this by a form of double 
projection where a conformal projection of the ellipsoid is first made to say an oblique Stereographic 
projection and then the Cauchy-Riemann equations are invoked in order to further project the rectangular 
coordinates on this to a modification in which lines of constant scale can be made to follow other than the 
normal great or small circles of Central meridians or standard parallels. The mathematical treatment of the 
New Zealand Map Grid is covered by a publication by New Zealand Department of Lands and Survey 
Technical Circular 1973/32 by I.F.Stirling. 
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1.3.9 Tunisia Mining Grid 
(EPSG dataset coordinate operation method code 9816) 
 
This grid is used as the basis for mineral leasing in Tunisia.  Lease areas are approximately 2 x 2 km or 400 
hectares.  The corners of these blocks are defined through a six figure grid reference where the first three 
digits are an easting in kilometres and the last three digits are a northing.  The latitudes and longitudes for 
block corners at 2 km intervals are tabulated in a mining decree dated 1st January 1953.  From this tabulation 
in which geographic coordinates are given to 5 decimal places it can be seen that: 

a) the minimum easting is 94 km, on which the longitude is 5.68989 grads east of Paris. 
b) the maximum easting is 490 km, on which the longitude is 10.51515 grads east of Paris. 
c) each 2 km grid easting interval equals 0.02437 grads. 
d) the minimum northing is 40 km, on which the latitude is 33.39 grads. 
e) the maximum northing is 860 km, on which the latitude is 41.6039 grads. 
f) between 40 km N and 360 km N, each 2 km grid northing interval equals 0.02004 grads. 
g) between 360 km N and 860 km N, each 2 km grid northing interval equals 0.02003 grads. 

 
This grid could be considered to be two equidistant cylindrical projection zones, north and south of the 360 
km northing line.  However this would require the introduction of two spheres of unique dimensions.  OGP 
has therefore implemented the Tunisia mining grid as a coordinate conversion method in its own right.  
Formulas are: 
 
Grads from Paris 
 
ϕ (grads) = 36.5964 + [(N – 360) * A]  
where N is in kilometres and A = 0.010015 if N > 360, else A = 0.01002. 
 
λParis (grads) = 7.83445 + [(E – 270) * 0.012185], where E is in kilometres. 
 
The reverse formulas are: 
 
E (km) = 270 + [(λParis – 7.83445) / 0.012185] where λParis is in grads. 
 
N (km) = 360 + [(ϕ – 36.5964) / B]  
where ϕ is in grads and B = 0.010015 if  ϕ > 36.5964, else B = 0.01002. 
 
Degrees from Greenwich 
 
Modern practice in Tunisia is to quote latitude and longitude in degrees with longitudes referenced to the 
Greenwich meridian.  The formulas required in addition to the above are: 
 
ϕd (degrees) =  (ϕg * 0.9) where ϕg is in grads. 
λGreenwich (degrees) = [(λParis + 2.5969213) * 0.9] where λParis is in grads. 
 
ϕg (grads) =  (ϕd / 0.9) where ϕd is in decimal degrees. 
λParis (grads) = [(λGreenwich / 0.9) – 2.5969213)] where λGreenwich is in decimal degrees. 
 
Example: 
 
For grid location 302598, 
Latitude ϕ  = 36.5964 + [(598 – 360) * A].  As N > 360, A = 0.010015. 

ϕ  = 38.97997 grads = 35.08197 degrees. 
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Longitude λ  = 7.83445 + [(E – 270) * 0.012185], where E = 302. 
λ = 8.22437 grads east of Paris = 9.73916 degrees east of Greenwich. 

 
 
1.3.10 American Polyconic 
(EPSG dataset coordinate operation method code 9818) 
 
This projection was popular before the advent of modern computers due to its ease of mechanical 
construction, particularly in the United States. It is neither conformal nor equal area, and is distortion-free 
only along the longitude of origin. A modified form of the polyconic projection was adopted in 1909 for the 
International Map of the World series of 1/1,000,000 scale topographic maps. A general study of the 
polyconic family of projections by Oscar Adams of the US Geological Survey was published in 1919 (and 
reprinted in 1934).  
 
The formulas to derive the projected Easting and Northing coordinates are: 
 
If  ϕ = 0: 
 Easting, E =  FE + a(λ –  λO) 

Northing, N =  FN - MO 
 
If  ϕ is not zero: 
 Easting, E =  FE + ν cotϕ sinL 
 
 Northing, N =  FN + M – Mo + ν cotϕ(1 – cosL) 
  
where L = (λ –  λO)sinϕ 

ν = a / (1 –  e2sin2ϕ)0.5 
 M = a[(1 –  e2/4 –  3e4/64 –  5e6/256 –....)ϕ  –  (3e2/8 + 3e4/32 + 45e6/1024+....)sin2ϕ  
  + (15e4/256 + 45e6/1024 +.....)sin4ϕ  –  (35e6/3072 + ....)sin6ϕ  + .....] 
 with ϕ in radians and MO for ϕO, the latitude of the origin, derived in the same way. 
 
The reverse formulas to convert Easting and Northing projected coordinates to latitude and longitude require 
iteration. This iteration will not converge if (λ –  λO)>90º but the projection should not be used in that range. 
 
First MO is calculated using the formula for M given in the forward case. Then: 
 
If MO = (N-FN) then: 
 ϕ = 0 
 λ = λO + (E-FE)/a 
 
If MO  does not equal (N-FN) then: 

 
 A = [MO + (N-FN)] / a 
 B = A2 + {[(E-FE)2] / a2} 
  
 C =  
 M is found  
 H = Mn 
             J = H / a 
 ϕ" = ϕ'  –  [A(C J +1) – J – 0.5C(J2 + B)] /   
                                      {e2 sin 2ϕ' (J2 + B – 2A J) / 4C + (A – J) (C H – [2 / sin  2ϕ')] – H} 
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Then after solution of ϕ 
 λ = λO + {asin[(E-FE) C / a]} / sinϕ  
 
 
1.3.11 Lambert Azimuthal Equal Area 
(EPSG dataset coordinate operation method code 9820) 
 
Oblique aspect 
To derive the projected coordinates of a point, geodetic latitude (ϕ) is converted to authalic latitude (ß). The 
formulae  to convert geodetic latitude and longitude (ϕ, λ) to Easting and Northing are: 
 Easting, E   = FE + {(B * D)  [cos ß  sin(λ – λO)]} 
 Northing, N = FN + (B / D)  {(cos ßO  sin ß) –  [sin ßO  cos ß  cos(λ – λO)]} 
where 

B = Rq  (2 / {1 + sin ßO  sin ß + [cos ßO  cos ß  cos(λ – λO)]})0.5 
D = a [cos ϕO / (1 – e2 sin2 ϕO)0.5] / (Rq  cos ßO) 
Rq = a (qP  / 2) 0.5 
ß = asin (q / qP) 
ßO = asin (qO / qP) 
q = (1 – e2) ([sin ϕ / (1 – e2sin2ϕ)] – {[1/(2e)]  ln [(1 – e sin ϕ) / (1 + e sin ϕ)]}) 
qO = (1 – e2) ([sin ϕO / (1 – e2sin2ϕO)] – {[1/(2e)]  ln [(1 – e sin ϕO) / (1 + e sin ϕO)]}) 
qP = (1 – e2) ([sin ϕP / (1 – e2sin2ϕP)] – {[1/(2e)]  ln [(1 – e sin ϕP) / (1 + e sin ϕP)]}) 
  where ϕP = π/2 radians, thus 
qP = (1 – e2) ([1 / (1 – e2)] – {[1/(2e)]  ln [(1 – e) / (1 + e)]}) 

 
The reverse formulas to derive the geodetic latitude and longitude of a point from its Easting and Northing 
values are: 
 ϕ = ß' + [(e2/3 + 31e4/180 + 517e6/5040)  sin 2ß'] + [(23e4/360 + 251e6/3780)  sin 4ß'] +  
[(761e6/45360)  sin 6ß'] 
 
 λ = λO + atan {(E–FE)  sin C / [D ρ  cos ßO  cos C – D2 (N–FN)  sin ßO  sin C]} 
where 
 ß' = asin{(cosC  sin ßO) + [(D  (N–FN)  sinC  cos ßO) / ρ]} 
 C = 2  asin(ρ / 2 Rq) 
 ρ = {[(E–FE)/D] 2 + [D  (N –FN)]2}0.5 
  
and D, Rq, and ßO are as in the forward equations. 
 
Example 
For Projected Coordinate Reference System: ETRS89 / ETRS-LAEA 
Parameters: 

Ellipsoid: GRS 1980 a = 6378137.0 metres  1/f = 298.2572221 
 then  e = 0.081819191   

    
Latitude of natural origin ϕ O 52°00'00.000"N = 0.907571211 rad 
Longitude of natural origin λO 10°00'00.000"E = 0.174532925 rad 
False easting FE 4321000.00 metres  
False northing FN 3210000.00 metres  

 
Forward calculation for:  

Latitude ϕ =   50°00'00.000"N = 0.872664626 rad 
Longitude λ =     5°00'00.000"E = 0.087266463 rad 

 
First gives    
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qP = 1.995531087 qO = 1.569825704 
q = 1.525832247 Rq = 6371007.181 

ßO = 0.905397517 ß = 0.870458708 
D = 1.000425395 B = 6374393.455 

  
whence   
 E = 3962799.45 m  
 N = 2999718.85 m  
 
Reverse calculation for the same Easting and Northing (3962799.45 E, 2999718.85 N) first gives: 
  

ρ = 415276.208 
C = 0.065193736 
ß' = 0.870458708 

 
Then Latitude ϕ =   50°00'00.000"N 
 Longitude λ =     5°00'00.000"E 

 
 
Polar aspect 
For the polar aspect of the Lambert Azimuthal Equal Area projection, some of the above equations are 
indeterminate. Instead, for the forward case from latitude and longitude (ϕ, λ) to Easting (E) and Northing 
(N): 
 
For the north polar case: 
 Easting, E   = FE + [ρ sin(λ – λO)] 
 Northing, N = FN – [ρ cos(λ – λO)] 
where 

ρ = a (qP  – q) 0.5 
and qP  and q are found as for the general case above. 
 
For the south polar case: 
 Easting, E   = FE + [ρ sin(λ – λO)] 
 Northing, N = FN + [ρ  cos(λ – λO)] 
where 

ρ = a (qP  + q) 0.5 
and qP  and q are found as for the general case above. 
 
For the reverse formulas to derive the geodetic latitude and longitude of a point from its Easting and 
Northing: 
 ϕ = ß' + [(e2/3 + 31e4/180 + 517e6/5040)  sin 2ß'] + [(23e4/360 + 251e6/3780)  sin 4ß'] +  
[(761e6/45360)  sin 6ß'] 
as for the oblique case, but where 
 ß' = ±asin [1– ρ2 / (a2{1– [(1– e2)/2e] ln[(1–e)/(1+e)]})], taking the sign of ϕ O 
and ρ = {[(E –FE)] 2 + [(N – FN)]2}0.5 
Then 
 λ = λO + atan [(E –FE) / (N –FN)] for the south pole case 
and 
 λ = λO + atan [(E –FE) / – (N –FN)] = λO + atan [(E –FE) / (FN –N)] for the north pole case. 
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1.3.11.1 Lambert Azimuthal Equal Area (Spherical) 
(EPSG dataset coordinate operation method code 1027) 
 
The US National Atlas uses the spherical form of the oblique case, so exceptionally OGP includes this 
method in the EPSG dataset. See USGS Professional Paper 1395, "Map Projections - A Working Manual" by 
John P. Snyder for formulas and example. 
 
R is the radius of the sphere and will normally be one of the CRS parameters. If the figure of the earth used 
is an ellipsoid rather than a sphere then R should be calculated as the radius of the authalic sphere using the 
formula for RA given in section 1.2 of this Guidance Note, table 3. Note however that if applying spherical 
formula to ellipsoidal coordinates, the authalic projection properties are not preserved. 
 
 
 
1.3.12 Lambert Cylindrical Equal Area 
(EPSG dataset coordinate operation method code 9835) 
 
See USGS Professional Paper 1395, "Map Projections - A Working Manual" by John P. Snyder for formulas 
and example. 
 
 
1.3.12.1 Lambert Cylindrical Equal Area (Spherical) 
(EPSG dataset coordinate operation method code 9834) 
 
For the forward calculation for the normal aspect of the projection in which ϕ1 is the latitude of the standard 
parallel: 
 

E =  FE + R (λ – λO) cos(ϕ1) 
N =  FN + R sin(ϕ) / cos(ϕ1) 

 
where  ϕ1, ϕ and λ are expressed in radians 
 
R is the radius of the sphere and will normally be one of the CRS parameters. If the figure of the earth used 
is an ellipsoid rather than a sphere then R should be calculated as the radius of the authalic sphere using the 
formula for RA given in section 1.2, table 3. 
 
For the reverse calculation: 
 

ϕ = asin{[(N – FN) / R] cos(ϕ1)} 
λ = λO + {[E – FE] / [R cos(ϕ1)]} 

 
where R is as for the forward method. 
 
See USGS Professional Paper 1395, "Map Projections - A Working Manual" by John P. Snyder for formulas 
for oblique and polar aspects and examples. 
 
 
1.3.13 Albers Equal Area 
(EPSG dataset coordinate operation method code 9822) 
 
To derive the projected coordinates of a point, geodetic latitude (ϕ) is converted to authalic latitude (ß). The 
formulas to convert geodetic latitude and longitude (ϕ, λ) to Easting (E) and Northing (N) are:  
 Easting (E)     =  EF + (ρ  sin θ) 
 Northing (N)  =  NF + ρO – (ρ  cos θ)  
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where 
 θ  = n  (λ – λO) 
 ρ  = [a  (C – n α)0.5] / n 
 ρO = [a  (C – n αO)0.5] / n 
and 
 C  = m1

2 + (n  α1) 
 n   = (m1

2 – m2
2) / (α2 – α1) 

 m1 = cos ϕ1 / (1 – e2sin2ϕ1)0.5 
 m2 = cos ϕ2 / (1 – e2sin2ϕ2)0.5 
 α   =  (1 – e2) {[sinϕ / (1 – e2sin2ϕ)] – [1/(2e)] ln [(1 – e sinϕ) / (1 + e sinϕ)]}  

αO  = (1 – e2)  {[sinϕO / (1 – e2sin2ϕO)] – [1/(2e)] ln [(1 – e sinϕO) / (1 + e sinϕO)]} 
α1  = (1 – e2)  {[sinϕ1 / (1 – e2sin2ϕ1)] – [1/(2e)] ln [(1 – e sinϕ1) / (1 + e sinϕ1)]} 
α2  = (1 – e2)  {[sinϕ2 / (1 – e2sin2ϕ2)] – [1/(2e)] ln [(1 – e sinϕ2) / (1 + e sinϕ2)]} 

 
The reverse formulas to derive the geodetic latitude and longitude of a point from its Easting and Northing 
values are: 

φ = ß' + (e2/3 + 31e4/180 + 517e6/5040)  sin 2ß'] + [(23e4/360 + 251e6/3780)  sin 4ß'] 
 + [(761e6/45360)  sin 6ß'] 
 
λ =   λO + (θ / n) 

where 
 ß' =  asin(α' / {1 – [(1 – e2) / (2  e)]  ln [(1 – e) / (1 + e)] 
 α' =  [C – (ρ2  n2 / a2)] / n 
 ρ =  {(E – EF)2 + [ρO – (N – NF)]2 }0.5 
 θ =  atan [(E – EF) / [ρO – (N – NF)] 
and C, n and ρO are as in the forward equations. 

 
Example 
See USGS Professional Paper 1395, "Map Projections - A Working Manual" by John P. Snyder. 
 
 
1.3.14 Equidistant Cylindrical 
(EPSG dataset coordinate operation method code 1028) 
 
The characteristics of the Equidistant Cylindrical projection are that the scale is true along two standard 
parallels equidistant from the equator (or at the equator if that is the standard parallel) and along the 
meridians. The formulas usually given for this method employ spherical equations with a mean radius of 
curvature sphere calculated from the latitude of standard parallel. This is a compromise, often satisfactory for 
the low resolution purposes to which it is put. However in the spherical implementation the distance is not 
true along the meridians nor along the standard parallel(s). Spherical formulas are given in section 1.13.14.1 
below. 
 
The ellipsoidal forward equations to convert latitude and longitude to easting and northing are 
 

E = FE + ν1 cosφ1 (λ – λO) 
N = FN + M 

where 
ν1 = a /(1 – e2sin2φ1)0.5  (see section 1.2 table 3) 

and 

                                                      (1) 
or 
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                   (2) 

 
The first calculation (1) of M above contains an elliptic integral of the third kind.  The alternative calculation 
(2) of M contains an elliptic integral of the second kind.  If software supports the functions for these 
integrals, then the functions can be used directly.  Otherwise, the value of M can be computed through a 
series equation.  The following series equation is adequate for any ellipsoid with a flattening of 1/290 or less, 
which covers all earth-based ellipsoids of record. 
 

             
 
 
   The inverse equations are  
 

            

 
where 
            X = E - FE 
            Y = N - FN 
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Example 
For Projected Coordinate Reference System: WGS84 / World Equidistant Cylindrical 
Parameters: 

Ellipsoid: WGS 1984 a = 6378137.0 metres  1/f =298.257223563 
 then  e = 0.08181919084262   

    
Latitude of first standard parallel ϕ 1 =  0°00'00.000"N = 0.0 rad 
Longitude of natural origin λO =  0°00'00.000"E = 0.0 rad 
False easting FE =              0.00 metres  
False northing FN =              0.00 metres  

 
Forward calculation for:  

Latitude ϕ =   55°00'00.000"N = 0.959931086 rad 
Longitude λ =   10°00'00.000"E = 0.174532925 rad 

 
First gives   

Radius of curvature in prime vertical at ϕ1   ν1 = 6378137.0 
Radius of curvature of parallel at ϕ1  ν1 cos φ1 = 6378137.0 

Meridional arc distance from equator to φ M  = 6097230.3131 
  
whence   
 E = 1113194.91 m  
 N = 6097230.31 m  
 
Reverse calculation for the same Easting and Northing (1113194.91 E, 6097230.31 N) first gives: 
  

Rectifying latitude (radians)  µ = 0.9575624671 
Second flattening n = 0.001679220386 

 
Then Latitude ϕ =   55°00'00.000"N 
 Longitude λ =   10°00'00.000"E 

 
 
 
1.3.14.1 Equidistant Cylindrical (Spherical) 
(EPSG dataset coordinate operation method code 1029) 
 
This method has one of the simplest formulas available. If the latitude of natural origin (ϕ1) is at the equator 
the method is also known as Plate Carrée. It is not used for rigorous topographic mapping because its 
distortion characteristics are unsuitable. Formulas are included to distinguish this map projection method 
from an approach sometimes mistakenly called by the same name and used for simple computer display of 
geographic coordinates – see Pseudo Plate Carrée below. 
 
For the forward calculation of the Equidistant Cylindrical method: 
 

E =  FE + R (λ – λO) cos(ϕ1) 
N =  FN + R ϕ 

 
where  ϕ1, λO, ϕ and λ are expressed in radians. 
 
R is the radius of the sphere and will normally be one of the CRS parameters. If the figure of the earth used 
is an ellipsoid rather than a sphere then R should be calculated as the radius of the conformal sphere at the 
projection origin at latitude ϕ1 using the formula for RC given in section 1.2, table 3, of this document. Note 
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however that if applying spherical formula to ellipsoidal coordinates, the equidistant projection properties are 
not preserved. 
 
For the reverse calculation: 
 

ϕ = (N – FN) / R   
λ = λO + {[E – FE] / [R cos(ϕ1)]} 

 
where R is as for the forward method. 
 
 
1.3.14.2 Pseudo Plate Carrée 
(EPSG dataset coordinate operation method code 9825) 
 
This is not a map projection in the true sense as the coordinate system units are angular (for example, 
decimal degrees) and therefore of variable linear scale. It is used only for depiction of graticule 
(latitude/longitude) coordinates on a computer display. The origin is at latitude (ϕ) = 0, longitude (λ) = 0. 
See above for the formulas for the proper Plate Carrée map projection method. 
 
For the forward calculation: 
 
 X = λ 
 Y = ϕ 
 
For the reverse calculation: 
 
 ϕ = Y 
 λ = X 
 
 
1.3.15 Bonne 
(EPSG dataset coordinate operation method code 9827) 
 
The Bonne projection was frequently adopted for 18th and 19th century mapping, but being equal area rather 
than conformal its use for topographic mapping was replaced during the 20th century by conformal map 
projection methods. 
 
The formulas to convert geodetic latitude and longitude (ϕ, λ) to Easting and Northing are: 
 

E = (ρ sin T) + FE 
N = (a mO / sin ϕO –  ρ cos T) + FN 

 
where 

m = cosϕ / (1 –  e2sin2ϕ)0.5 
with ϕ in radians and mO for ϕO, the latitude of the origin, derived in the same way.  

  
M = a[(1 –  e2/4 –  3e4/64 –  5e6/256 –....)ϕ – (3e2/8 + 3e4/32 + 45e6/1024+....)sin2ϕ  

  + (15e4/256 + 45e6/1024 +.....)sin4ϕ –  (35e6/3072 + ....)sin6ϕ + .....] 
 with ϕ in radians and MO for ϕO, the latitude of the origin, derived in the same way. 
 
 ρ = a  mO / sin ϕO + MO – M 
 T = a  m (λ – λO) / ρ       with λ and λO in radians 
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For the reverse calculation: 
 X = E – FE 
 Y = N – FN 

ρ = ± [X2 + (a . mO / sin ϕO – Y)2]0.5  taking the sign of ϕO 
 M = a  mO / sin ϕO + MO – ρ 
 µ = M / [a (1 – e2/4 – 3e4/64 – 5e6/256 – …)] 
 e1 = [1 – (1 – e2)0.5] / [1 + (1 – e2)0.5] 

ϕ = µ + (3e1/2 –  27e1
3/32 +.....)sin2µ + (21e1

2/16 –  55e1
4/32 + ....)sin4µ 

  + (151e1
3/96 +.....)sin6µ + (1097e1

4/512  –  ....)sin8µ + ...... 
 m = cos ϕ / (1 – e2 sin2 ϕ)0.5 
 
If ϕO is not negative 

λ = λO + ρ {atan[X / (a . mO / sin ϕO – Y)]} / a . m 
but if ϕO is negative 

λ = λO + ρ {atan[– X / (Y – a . mO / sin ϕO )]} / a . m 
In either case, if ϕ = ±90°, m = 0 and the equation for λ is indeterminate, so use λ = λO. 
 
 
1.3.15.1 Bonne (South Orientated) 
(EPSG dataset coordinate operation method code 9828) 
 
In Portugal a special case of the method with coordinate system axes positive south and west has been used 
for older mapping. The formulas are as for the general case above except: 
 

W = FE – (ρ  sin T) 
S  = FN – (a  mO / sin ϕO –  ρ  cos T) 
 

In these formulas the terms FE and FN retain their definition, i.e. in the Bonne (South Orientated) method 
they increase the Westing and Southing value at the natural origin. In this method they are effectively false 
westing (FW) and false southing (FS) respectively. 

 
For the reverse formulas, those for the standard Bonne method above apply, with the exception that: 
 X = FE – W 
 Y = FN – S 
 
 
1.3.16 Azimuthal Equidistant 
 
1.3.16.1 Modified Azimuthal Equidistant 
(EPSG dataset coordinate operation method code 9832) 
 
For various islands in Micronesia the US National Geodetic Survey has developed formulae for the oblique 
form of the ellipsoidal projection which calculates distance from the origin along a normal section rather 
than the geodesic. For the distances over which these projections are used (under 800km) this modification 
introduces no significant error.  
 
First calculate a constant for the projection: 

νO = a /(1 – e2sin2ϕO)1/2 
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Then the forward conversion from latitude and longitude is given by: 
 ν = a /(1 – e2sin2ϕ)1/2 
 ψ = atan [(1 – e2) tan ϕ + e2  νO sin ϕO  / (ν cos ϕ)] 
 α = atan {sin (λ – λO) / [cos ϕO tan ψ – sin ϕO cos (λ – λO)]} 

G  = e sin ϕO /(1 – e2)1/2 

H = e cos ϕO cos α /(1 – e2)1/2 
Then 
 if (sin α) = 0,  s = asin (cos ϕO sin ψ – sin ϕO cos ψ) * SIGN(cos α) 

if (sin α) ≠ 0,  s = asin [sin (λ – λO) cos ψ / sin α] 
 
and in either case 
 c  = νO s {[1 – s2 H2 (1 – H2) /6] + [(s3/8)GH(1-2H2)] + (s4/120)[H2(4-7H2) – 3G2(1-7H2)] – 
[(s5/48)GH]} 
 
Then 
 E = FE + c sin α 
 N = FN + c cos α 
 
For the reverse conversion from easting and northing to latitude and longitude: 
 c' = [(E – FE)2 + (N – FN)2]0.5 
 α' = atan [(E – FE) / (N – FN)] 
 A = – e2 cos2 ϕO cos2 α' / (1 – e2) 
 B = 3e2 (1-A) sin ϕO  cos ϕO cos α' / (1 – e2) 
 D = c' / νO 
 J = D – [A (1 + A) D3 / 6] – [B (1 + 3A) D4 / 24] 
 K = 1 – (A J2 / 2) – (B J3 / 6) 
 Ψ' = asin (sin ϕO cos J + cos ϕO sin J cos α') 
 
Then 
 ϕ = atan [(1 – e2 K sin ϕO / sin Ψ') tan Ψ' / (1 – e2)] 
 λ = λO + asin (sin α' sin J / cos Ψ') 
 
Example: 
For Projected Coordinate Reference System: Guam 1963 / Yap Islands 
 
Parameters: 

Ellipsoid: Clarke 1866 a = 6378206.400 metres  1/f = 294.97870 
 then  e = 0.08227185  e2 = 0.00676866 

    
Latitude of natural origin ϕO  9°32'48.15"N = 0.166621493 rad 
Longitude of natural origin λO 138°10'07.48"E = 2.411499514 rad 
False easting FE 40000.00 metres   
False northing FN 60000.00 metres   

 
Forward calculation for:  

Latitude ϕ =     9°35'47.493"N = 0.167490973 rad 
Longitude λ = 138°11'34.908"E = 2.411923377 rad 
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First gives    
νO = 6378800.24 G = 0.013691332 
ν = 6378806.40 H = 0.073281276 
ψ = 0.167485249 s = 0.000959566 
α = 0.450640866 c = 6120.88 

whence   
E = 42665.90 
N = 65509.82 

 
 
Reverse calculation for the same Easting and Northing (42665.90 m E, 65509.82 m N) first gives: 
 

c' = 6120.88 D = 0.000959566 
α' = 0.450640866 J = 0.000959566 
A = -0.005370145 K = 1.000000002 
B = 0.003026119 Ψ' = 0.167485249 

whence   
ϕ = 0.167490973 rad =     9°35'47.493"N 
λ = 2.411923377 rad = 138°11'34.908"E 

 
 
 
1.3.16.2 Guam Projection 
(EPSG dataset coordinate operation method code 9831) 
 
The Guam projection is a simplified form of the oblique case of the azimuthal equidistant projection. For the 
Guam projection the forward conversion from latitude and longitude is given by:  
 x = a (λ – λO) cos ϕ / [(1 – e2 sin2ϕ)(1/2)] 
 E = FE + x 
 N = FN + M – MO + {x2 tan ϕ [(1 – e2 sin2ϕ)(1/2)] / (2a)} 
where 
 M = a[(1 –  e2/4 –  3e4/64 –  5e6/256 –....)ϕ  –  (3e2/8 + 3e4/32 + 45e6/1024+....)sin2ϕ  
  + (15e4/256 + 45e6/1024 +.....)sin4ϕ  –  (35e6/3072 + ....)sin6ϕ  + .....] 

with ϕ in radians and MO for ϕO, the latitude of the natural origin, derived in the same way. 
 
The reverse conversion from easting and northing to latitude and longitude requires iteration of three 
equations. The Guam projection uses three iterations, which is satisfactory over the small area of application. 
First MO for the latitude of the origin ϕO is derived as for the forward conversion. Then: 
 e1   = [1 – (1 – e2)0.5] / [1 + (1 – e2)0.5] 
and 

M'  =  MO + (N – FN) – {(E – FE)2 tan ϕO [(1 – e2 sin2ϕO)(1/2)] / (2a)} 
µ'   =  M' / a(1 –  e2/4 –  3e4/64 –  5e6/256 –....) 
ϕ'   =  µ' + (3e1/2 –  27e1

3/32)sin(2µ') + (21e1
2/16 –  55e1

4/32)sin(4µ') + (151e1
3/96)sin(6µ')  

+ (1097e1
4/512)sin(8µ') 

 
 M"  = MO + (N – FN) – {(E – FE)2 tan ϕ' [(1 – e2 sin2ϕ')(1/2)] / (2a)} 

µ"   =  M" / a(1 –  e2/4 –  3e4/64 –  5e6/256 –....) 
ϕ"  =  µ" + (3e1/2 –  27e1

3/32)sin(2µ") + (21e1
2/16 –  55e1

4/32)sin(4µ") + (151e1
3/96)sin(6µ")  

 + (1097e1
4/512)sin(8µ") 

 
 M'''   = MO + (N – FN) – {(E – FE)2 tan ϕ" [(1 – e2 sin2ϕ")(1/2)] / (2a)} 

µ'''   =  M''' / a(1 –  e2/4 –  3e4/64 –  5e6/256 –....) 
ϕ'''   =  µ''' + (3e1/2 –  27e1

3/32)sin(2µ''') + (21e1
2/16 –  55e1

4/32)sin(4µ''') + (151e1
3/96)sin(6µ''')  
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+ (1097e1
4/512)sin(8µ''') 

Then 
λ = λO + {(E – FE)  [(1 – e2 sin2ϕ''')(1/2)] / (a cos ϕ''')} 

 
Example: 
For Projected Coordinate Reference System: Guam 1963 / Guam SPCS 
 
Parameters: 

Ellipsoid: Clarke 1866 a = 6378206.400 metres  1/f = 294.97870 
 then  e = 0.08227185  e2 = 0.00676866 

    
Latitude of natural origin ϕO  13°28'20.87887"N = 0.235138896 rad 
Longitude of natural origin λO 144°44'55.50254"E = 2.526342288 rad 
False easting FE 50000.00 metres   
False northing FN 50000.00 metres   

 
Forward calculation for:  

Latitude ϕ =  13°20'20.53846"N = 0.232810140 rad 
Longitude λ = 144°38'07.19265"E = 2.524362746 rad 

 
x = – 12287.52 m 
MO = 1489888.76 m 
M = 1475127.96 m 

 
whence   

E = 37,712.48 m 
N = 35,242.00 m 

 
 
Reverse calculation for the same Easting and Northing (37,712.48 m E, 35,242.00 m N) first gives: 
 

MO = 1489888.76 m 
e1 = 0.001697916 

and 
 M (metres) µ (radians) ϕ (radians)   
First iteration: 1475127.93 0.231668814 0.232810136   
Second iteration: 1475127.96 0.231668819 0.232810140   
Third iteration: 1475127.96 0.231668819 0.232810140 = 13°20'20.538"N 

 
Then 

λ = 2.524362746 rad = 144°38'07.193"E 
 
 

1.3.17 Perspectives 
 
1.3.17.1 Intoduction 
 
Geophysical and reservoir interpretation and visualisation systems now work in a 3D "cube" offering 
continuous, scaleable, viewing and mapping in a single Cartesian 3D coordinate system. Subsurface mapping 
historically has been undertaken in pseudo-3D coordinate reference systems consisting of a vertical 
component together with an independent horizontal component which had to be changed to maintain 
cartographic correctness over large areas. Map projections are inherently distorted. Typically, distances and 
areas measured on the map-grid only approximate their true values. Over small areas near the projection 
origin, the distortions can be managed to be within acceptable limits. But it is impossible to map large areas 
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without significant distortion. This creates problems when there is a requirement to map areas beyond the 
limits of a map zone, typically overcome by moving to another zone.  
 
The motivation here is to offer a method of overcoming these limitations by describing geodetically well-
defined CRSs that can be implemented in 3D within a visualisation environment and can be scaled (from 
reservoirs to regions) without distortion. There are three components: 
• the use of geodetically rigorous 3D geocentric and topocentric coordinates, the relationship of which to 

geographic coordinates is descibed in section 2.2; 
• perspective realizations of topocentric coordinates in 2D (sections 1.3.17.2 and 1.3.17.3); 
• an ellipsoidal development of the orthographic projection (section 1.3.18). This 2D representation 

contains the quantifiable mapping distortions inherent in this projection method. 
 
 

 
Figure 9. Vertical perspective 

 
Classical map projections map 2D latitude and longitude onto the plane. With reference to figure 9 above, 
point P at a height hP above the ellipsoid is first reduced to the ellipsoid surface at P', and P' is then mapped 
onto the mapping plane at q'. The height of the point is not material.  
 
In contrast, perspectives map points on, above or below the surface of the ellipsoid onto the mapping plane; 
point P is mapped onto the mapping plane at q. The height of a point above or depth below the surface of the 
ellipsoid will change the horizontal coordinates at which the point maps. Perspectives are a view of the Earth 
from space without regard to cartographic properties such as conformality or equality of area.   
 
Perspectives can be classified as vertical or tilted. Consider a point anywhere on the ellipsoid, a plane tangent 
to the ellipsoid at that point, and a perpendicular to the ellipsoid (and the tangent plane) at that point. Vertical 
perspectives are the view of the Earth from a point on the perpendicular through a mapping plane which is 
either the tangent plane or a plane parallel to the tangent plane. Tilted perspectives are the view from a point 
which is not on the perpendicular. Tilted perspectives are not considered further in this guidance note. 
 
In addition to vertical and tilted, perspectives can be classified as positive or negative. Perspectives with a 
positive viewing height hV are the view of the Earth from above, as from a satellite or from another celestial 
body (and as shown in figure 9). Perspectives with a negative viewing height hV are the “view” of the Earth 
from below, which is mathematically but not physically possible. The mapping equations, however, are 
identical; only the sign of one term (the viewing height, hV) differs. The viewing point cannot be on the 
mapping plane. 
 
In this development vertical perspectives are based upon topocentric coordinates that are valid for an 
ellipsoidal Earth. The introduction of an intermediate topocentric coordinate system (see Section 2.2) 
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simplifies the mathematical exposition of vertical perspectives. In such a topocentric Cartesian coordinate 
system, two of the three axes represent the horizontal plane. A change of perspective (zooming in and out) is 
achieved by moving the viewing point along the perpendicular. The mapping plane is the plane parallel to 
the tangent plane which passes through the topocentric origin (rather than the tangent plane itself). In the 
special case of the topocentric origin being on the ellipsoid surface then the mapping plane will be the 
tangent plane. 
 
1.3.17.2 Vertical Perspective 
(EPSG dataset coordinate operation method code 9838) 
 
This general case deals with a viewing point at a finite height above the origin. If the viewing point is at 
infinity (hV = ∞), the formulas for the orthographic case given in the next section should be used. 
 
The forward equations for the Vertical Perspective to convert geographic 3D coordinates (ϕ, λ, h) to Easting 
(E) and Northing (N) begin with the methods of Section 2.2.3 to convert the geographic coordinates to 
topocentric coordinates U, V, W. The perspective projection origin is coincident with the topographic origin 
and has coordinates (ϕO, λO, hO). As in Section 2.2.3: 
 

U = (ν + h) cos ϕ sin (λ – λO) 
V = (ν + h) [sin ϕ cos ϕO – cos ϕ sin ϕO cos (λ – λO)] + e2 (νO sin ϕO – ν sin ϕ ) cos ϕO  
W = (ν + h) [sin ϕ sin ϕO + cos ϕ cos ϕO cos (λ – λO)] + e2 (νO sin ϕO – ν sin ϕ ) sin ϕO – (νO + hO) 

 
Then, given the height hV of the perspective viewing point above the origin, the perspective coordinates (E, 
N) are calculated from topocentric coordinates (U, V, W) as: 
 

E = U hV / (hV – W) 
N = V hV / (hV – W) 

 
The reverse calculation from E,N to U,V,W and ϕ,λ,h is indeterminate. 
 
 
Example: 
For Projected Coordinate Reference System: WGS 84 / Vertical Perspective example 
 
Parameters: 

Ellipsoid: WGS 84 a = 6378137.0 metres  1/f = 298.2572236 
 then  e = 0.081819191   

 
Topographic origin latitude ϕO = 55°00'00.000"N = 0.95993109 rad 
Topographic origin longitude λO = 5°00'00.000"E = 0.08726646 rad 
Topographic origin ellipsoidal height hO = 200 metres   
Height of viewpoint hV = 5 900 kilometers   

 
Forward calculation for:  

Latitude ϕ = 53°48'33.82"N = 0.939151101 rad 
Longitude λ = 2°07'46.38"E = 0.037167659 rad 
Ellipsoidal height h = 73 metres   

 
 e2 = 0.006694380 
 νO = 6392 510.73 m  
 ν = 6392 088.02 m  
 
 U = –189 013.869 m 
 V = –128 642.040 m  
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 W =   – 4 220.171 m 
 
Then, 
 E = –188 878.767 m 
 N = –128 550.090 m 
 
 
1.3.17.3 Vertical Perspective (orthographic case) 
(EPSG dataset coordinate operation method code 9839) 
 
The orthographic vertical perspective is a special case of the vertical perspective with the viewing point at 
infinity (hV = ∞). Therefore, all projection "rays" are parallel to one another and all are perpendicular to the 
tangent plane. Since the rays are parallel, coordinates in the tangent-plane are the same in any other parallel 
mapping plane, i.e. are consistent for any value of hO, which therefore becomes irrelevant to the forward 
formulas. 
 
The orthographic vertical perspective forward conversion from 3D geographic coordinates latitude, longitude 
and ellipsoidal height (ϕ, λ, h) to Easting (E) and Northing (N) is given by: 
 

E = U = limit (U hV / (hV – W), hV → ∞) 
N = V = limit (V hV / (hV – W), hV → ∞) 

 
where, as in Sections 2.2.3 and 1.3.17.2: 
 

U = (ν + h) cos ϕ sin (λ – λO) 
V = (ν + h) [sin ϕ cos ϕO – cos ϕ sin ϕO cos (λ – λO)] + e2 (νO sin ϕO – ν sin ϕ ) cos ϕO  

 
The reverse calculation from E,N to U,V,W and ϕ,λ,h is indeterminate. 
 
 
Example: 
For Projected Coordinate Reference System: WGS 84 / Vertical Perspective (Orthographic case) example 
 
Parameters: 

Ellipsoid: WGS 84 a = 6378137.0 metres  1/f = 298.2572236 
 then  e = 0.081819191   

 
Topographic origin latitude ϕO = 55°00'00.000"N = 0.95993109 rad 
Topographic origin longitude  λO = 5°00'00.000"E = 0.08726646 rad 
Topographic origin ellipsoidal height hO = 200 metres   

 
Forward calculation for:  

Latitude ϕ = 53°48'33.82"N = 0.939151101 rad 
Longitude λ = 2°07'46.38"E = 0.037167659 rad 
Ellipsoidal height h = 73 metres   

 
The projection origin and example point are the same as those used in the general case of the Vertical 
Perspective in the previous section. Note that the ellipsoidal height at the point to be converted (h) is 73 
metres. The ellipsoidal height at the topocentric center (hO) is not used in any of the equations for the 
numerical examples that follow.  But hO will be used for the reverse case if W is known (for which a 
numerical example can be found in Section 2.2.3). 
 
 e2 = 0.006694380 
 νO = 6392 510.727 m  
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 ν = 6392 088.017 m  
 
Then, 
 E = –189013.869 m 
 N = –128642.040 m 
 
 
1.3.18 Orthographic Projection 
(EPSG dataset coordinate operation method code 9840) 
 
Most cartographic texts which describe the orthographic projection do so using a spherical development. 
This section describes an ellipsoidal development. This allows the projected coordinates to be consistent with 
those for the vertical perspectives described in the previous section (1.3.17). If the projection origin is at the 
topocentric origin, the ellipsoidal Orthographic Projection is a special case of the orthographic vertical 
perspective in which the ellipsoid height of all mapped points is zero (h = 0). The projection is neither 
conformal nor equal-area, but near the point of tangency there is no significant distortion. Within 90km of 
the origin the scale change is less than 1 part in 10,000.  
 
The Orthographic Projection forward conversion from 2D geographic coordinates latitude and longitude (ϕ, 
λ) and the origin on the ellipsoid (ϕO, λO) is given by: 
 

E = FE + ν cos ϕ sin (λ – λO) 
N = FN + ν [sin ϕ cos ϕO – cos ϕ sin ϕO cos (λ – λO)] + e2 (νO sin ϕO – ν sin ϕ) cos ϕO  

 
where 

ν is the prime vertical radius of curvature at latitude ϕ; ν = a /(1 – e2sin2ϕ)0.5, 
νO is the prime vertical radius of curvature at latitude of origin ϕO; νO = a /(1 – e2sin2ϕO)0.5, 
e is the eccentricity of the ellipsoid and e2 = (a2 – b2)/a2 = 2f – f2 
a and b are the ellipsoidal semi-major and semi-minor axes, 
1/f is the inverse flattening, and  
the latitude and longitude of the projection origin are ϕO and λO. 

 
These formulas are similar to those for the orthographic case of the vertical perspective (section 1.3.17.3) 
except that, for the Orthographic Projection given here, h = 0 and the term (ν + h) reduces to ν. The 
projection origin is at the topocentric system origin ϕO, λO with false origin coordinates FE and FN.  
 
For the reverse formulas for latitude and longitude corresponding to a given Easting (E) and Northing (N), 
iteration is required as the prime vertical radius (ν) is a function of latitude.  
 
Begin by seeding the iteration with the center of projection (or some better guess):  

ϕ = ϕO 

λ = λO 
 
Enter the iteration here with the (next) best estimates of ϕ and λ. Then solve for the radii of curvature in the 
prime vertical (ν) and meridian (ρ): 

ν = a / (1 – e2 sin2ϕ)0.5 
ρ = a (1 – e2) / (1 – e2 sin2ϕ)1.5 

 
Compute test values of E and N (E' and N') using the forward equations: 

E' = FE + ν cos ϕ sin (λ – λO) 
N' = FN + ν [sin ϕ cos ϕO – cos ϕ sin ϕO cos (λ – λO)] + e2 (νO sin ϕO – ν sin ϕ ) cos ϕO 

 
Partially differentiate the forward equations to solve for the elements of the Jacobian matrix:  
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J11 = ∂E/∂ϕ = – ρ sin ϕ sin (λ – λO)  
J12 = ∂E/∂λ = ν cos ϕ cos (λ – λO)  
J21 = ∂N/∂ϕ = ρ (cos ϕ cos ϕO + sin ϕ sin ϕO cos (λ – λO))  
J22 = ∂N/∂λ = ν sin ϕO cos ϕ sin (λ – λO)  

 
Solve for the determinant of the Jacobian: 

D = J11 J22 – J12 J21 
 
Solve the northerly and easterly differences this iteration:  

ΔE = E – E' 
ΔN= N – N' 

 
Adjust the latitude and longitude for the next iteration by inverting the Jacobian and multiplying by the 
differences:  

ϕ = ϕ + (J22 ΔE – J12 ΔN) / D 
λ = λ + (–J21 ΔE + J11 ΔN) / D 

 
Return to the entry point with new estimates of latitude and longitude and iterate until the change in ϕ and λ 
is not significant. 
 
Example: 
For Projected Coordinate Reference System: WGS 84 / Orthographic Projection example 
 
Parameters: 

Ellipsoid: WGS 84 a = 6378137.0 metres  1/f = 298.2572236 
 then  e = 0.081819191   

 
Latitude of natural origin ϕO 55°00'00.000"N = 0.95993109 rad 
Longitude of natural origin λO 5°00'00.000"E = 0.08726646 rad 
False easting FE 0 metres   
False northing FN 0 metres   

 
Forward calculation for:  

Latitude ϕ = 53°48'33.82"N = 0.939151101 rad 
Longitude λ = 2°07'46.38"E = 0.037167659 rad 

 
Note that ellipsoidal heights at the topocentric center (hO) and at the point to be converted (h) may be the 
same as in the Vertical Perspective examples in the previous section. Neither enter the computations that 
follow.   
 
 e2 = 0.006694380 
 νO = 6392 510.73 m  
 ν = 6392 088.02 m  
 
Then, 
 Easting, E   =  –189 011.711 m 
 Northing, N =  –128 640.567 m 
 
Reverse calculation for these E, N coordinates into latitude (ϕ) and longitude (λ) is iterative. The following 
values are constant every iteration. 
 
 e2 = 0.006694380 
 νO = 6392 510.73 m  
 ϕO = 0.95993109 rad 
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 λO = 0.08726646 rad  
 
The following values change during 4 iterations to convergence: 
 
 1 2 3 4 
Latitude 0.95993109 0.9397628327 0.9391516179 0.9391511016 
Longitude 0.08726646 0.0357167858 0.0371688977 0.0371676590 
ν 6392510.727 6392100.544 6392088.028 6392088.017 
ρ 6378368.440 6377140.690 6377103.229 6377103.198 
E' 0 –194318.490 –189006.908 –189011.711 
N' 0 –124515.840 –128637.469 –128640.567 
J11 0 265312.746 257728.730 257734.999 
J12 3666593.522 3766198.868 3769619.566 3769621.986 
J21 6378368.440 6370240.831 6370437.125 6370436.766 
J22 0 –159176.388 –154825.395 –154829.329 
D –2338688440386 –24033825331760 –24054027385585 –24054043431047 
ΔN –128640.567 –4124.727 –3.098 0 
ΔE –189011.711 5306.779 –4.803 0 
Latitude 0.9397628327 0.9391516179 0.9391511016 0.9391511016 
Longitude 0.0357167858 0.0371688977 0.0371676590 0.0371676590 
 
which results in: 
 

Latitude ϕ = 0.939151102 rad = 53°48'33.82"N 
Longitude λ = 0.037167659 rad = 2°07'46.38"E 
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2 Formulas for Coordinate Operations other than Map Projections 
 

2.1 Introduction 
 
Several types of coordinate reference system are recognised. The previous section discussed conversions of 
coordinates between geographic 2-dimensional and projected coordinate reference systems. The projected 
system is derived from its base geographic system. 
 
Geographic coordinates (latitude and longitude) are calculated on a model of the earth. They are only unique 
and unambiguous when the model and its relationship to the real earth is identified. This is accomplished 
through a geodetic datum. A change of geodetic datum changes the geographic coordinates of a point. A 
geodetic datum combined with description of coordinate system gives a coordinate reference system. 
Coordinates are only unambiguous when their coordinate reference system is identified and defined. 
 
It is frequently required to change coordinates derived in one geographic coordinate reference system to 
values expressed in another. For example, land and marine seismic surveys are nowadays most conveniently 
positioned by GPS satellite in the WGS 84 geographic coordinate reference system, whereas coordinates 
may be required referenced to the national geodetic reference system in use for the country concerned. It 
may therefore be necessary to transform the observed WGS 84 data to the national geodetic reference system 
in order to avoid discrepancies caused by the change of geodetic datum.  
 
Some transformation methods operate directly between geographic coordinates. Others are between 
geocentric coordinates (3-dimensional Cartesian coordinates where the coordinate system origin is fixed at 
the centre of the earth). The second part of this Guidance Note covers conversions and transformations 
between geographic coordinate reference systems, both directly and indirectly through geocentric systems. 
Some of these methods (polynomial family) may also be encountered for use between other types of 
coordinate reference systems, for example directly between projected coordinate reference systems. This 
second part also describes transformations of vertical coordinates.  
 
Coordinate handling software may execute more complicated operations, concatenating a number of steps 
linking together geographic, projected and/or engineering coordinates referenced to different datums. Other 
than as mentioned above, these concatenated operations are beyond the scope of this document. 
 
Note that it is very important to ensure that the signs of the parameter values used in the transformations are 
correct in respect of the transformation being executed. Preferably one should always express 
transformations in terms of "From".........."To"........... thus avoiding the confusion which may result from 
interpreting a dash as a minus sign or vice versa. 
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2.2 Coordinate Conversions other than Map Projections 
 
2.2.1 Geographic/Geocentric conversions 
(EPSG datset coordinate operation method code 9602) 
 
Latitude, ϕ , and Longitude, λ , and ellipsoidal height, h, in terms of a 3-dimensional geographic coordinate 
reference system may be expressed in terms of a geocentric (earth centred) Cartesian coordinate reference 
system X, Y, Z with the Z axis corresponding with the earth’s rotation axis positive northwards, the X axis 
through the intersection of the prime meridian and equator, and the Y axis through the intersection of the 
equator with longitude 90°E.  The geographic and geocentric systems are based on the same geodetic datum. 
 
Geocentric coordinate reference systems are conventionally taken to be defined with the X axis through the 
intersection of the Greenwich meridian and equator.  This requires that the equivalent geographic coordinate 
reference system be based on the Greenwich meridian.  In application of the formulas below, geographic 
coordinate reference systems based on a non-Greenwich prime meridian should first be transformed to their 
Greenwich equivalent. Geocentric coordinates X, Y and Z take their units from the units for the ellipsod axes 
(a and b). As it is conventional for X, Y and Z to be in metres, if the ellipsoid axis dimensions are given in 
another linear unit they should first be converted to metres. 
 
If the ellipsoidal semi major axis is a, semi minor axis b, and inverse flattening 1/f,  then 
 X =   (ν + h) cos ϕ cos λ  
 Y =   (ν + h) cos ϕ sin λ 
 Z =  [(1 –  e2) ν + h] sin ϕ 
 
where  ν is the prime vertical radius of curvature at latitude ϕ and is equal to  
 ν = a /(1 –  e2sin2ϕ)0.5, 
 ϕ and λ are respectively the latitude and longitude (related to the prime meridian) of the point, 
 h is height above the ellipsoid, (see note below), and 
 e is the eccentricity of the ellipsoid where e2 = (a2 – b2)/a2 = 2f – f2 
 
(Note that h is the height above the ellipsoid. This is the height value that is delivered by GPS satellite observations but 
is not the gravity-related height value which is normally used for national mapping and levelling operations. The 
gravity-related height (H) is usually the height above mean sea level or an alternative level reference for the country. If 
one starts with a gravity-related height H, it will be necessary to convert it to an ellipsoid height (h) before using the 
above transformation formulas. See section 2.4.5 below. For the WGS 84 ellipsoid the difference between ellipsoid and 
mean sea level can vary between values of -100m in the Sri Lanka area to +80m in the North Atlantic.) 
 
For the reverse conversion, Cartesian coordinates in the geocentric coordinate reference system may be 
converted to geographic coordinates in terms of the geographic 3D coordinate reference system by: 
 ϕ =  atan [(Z + e2ν sin ϕ) / (X2 + Y2)0.5] by iteration 
 λ  = atan Y/X 
 h  =  X sec λ sec ϕ  –  ν  
 
where λ is relative to the Greenwich prime meridian. 
 
To avoid iteration for ϕ it may alternatively be found from: 
 ϕ = atan[(Z + ε b sin3q) / (p – e2 a cos3q)] 
where 
 ε = e2 / (1 – e2) 
 b = a(1 – f) 
 p = (X2 + Y2)0.5 
 q = atan[(Z a) / (p b)] 
 
Then h may more conveniently be found from 
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 h = (p / cos ϕ) – ν 
 
Example: 
Consider a North Sea point with position derived by GPS satellite in the WGS 84 coordinate reference 
system. The WGS 84 ellipsoid parameters are: 
 

a = 6378 137.000m 
1/f = 298.2572236 
   
then   

e2  = 0.006694380 
ε = 0.006739497 
b = 6356 752.314 m 

 
Using the reverse direction direct formulas above, the conversion of WGS 84 geocentric coordinates of  
 

X = 3771 793.968 m 
Y =   140 253.342 m 
Z = 5124 304.349 m 

is: 
p = 3774400.712 
q = 0.937546077 
ϕ = 0.939151101 rad 
ν = 6392088.017 

 
Then WGS 84 geographic 3D coordinates are: 

 latitude ϕ = 53°48'33.820"
N 

 longitude λ =   2°07'46.380"E 
and ellipsoidal height h = 73.0m 

 
 
2.2.2 Geocentric/topocentric conversions 
(EPSG dataset coordinate operation method code 9836) 
 
A topocentric coordinate system is a 3-D Cartesian system having mutually perpendicular axes U, V, W with 
an origin on or near the surface of the Earth. The U-axis is locally east, the V-axis is locally north and the W-
axis is up forming a right-handed coordinate system. It is applied in two particular settings: 

(i) the height axis W is chosen to be along the direction of gravity at the topocentric origin. The other 
two axes are then in the horizontal plane. A special case of this, often applied in engineering applications, is 
when the topocentric origin is on the vertical datum surface; then topocentric height W approximates to 
gravity-related height H. 

(ii) the topocentric height axis W is chosen to be the direction through the topocentric origin and 
along perpendicular to the surface of the ellipsoid. The other two topocentic axes (U and V) are in the 
"topocentric plane", a plane parallel to the tangent to the ellipsoid surface at the topocentric origin and 
passing through the topocentric origin (see figure 11 below). The coordinates defining the topocentric origin 
will usually be expressed in ellipsoidal terms as latitude ϕO, longitude λO and ellipsoidal height hO but may 
alternatively be expressed as geocentric Cartesian coordinates XO, YO, ZO. In this context the geocentric 
coordinates of the topocentric origin should not be confused with those of the geocentric origin where 
X=Y=Z=0.  
 
A special case of this is when the topocentric origin is chosen to be exactly on the ellipsoid surface and hO = 
0. Then the topocentric U and V axes are in the ellipsoid tangent plane and at (and only at) the topocentric 
origin topocentric height W = ellipsoidal height h.  
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Figure 10. Topocentric and geocentric systems 
 
 
 

 
Figure 11. Topocentric and ellipsoidal heights 

 
 
In this and the following section we are concerned with the second of the two settings for topocentric 
coordinate systems where the system is associated with the ellipsoid and a particular geodetic datum. The 
application of such topocentric coordinates includes scalable mapping and visualisation systems as described 
in section 1.3.17. The following section covers the conversion between ellipsoidal coordinates and 
topocentric coordinates. The remainder of this section describes how geocentric coordinates X, Y, Z may be 
converted into topocentric coordinates U, V, W given the geocentric coordinates of the topocentric CS origin 
(XO, YO, ZO).  
 
First it is necessary to derive ellipsoidal values ϕO, λO of the topocentric origin from their geocentric values 
XO, YO, ZO through the reverse formulas given in Section 2.2.1 above. (The value hO for the ellipsoidal 
height of the topocentric origin is not required in what follows.) 
 
Then topocentric coordinates [U, V, W] are computed as follows: 
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⎛ U ⎞    ⎛ ⎛ X ⎞  ⎛ XO ⎞ ⎞ 
⎜  ⎟    ⎜ ⎜  ⎟  ⎜  ⎟ ⎟ 
⎜ V ⎟ = R * ⎜ ⎜ Y ⎟ – ⎜ YO ⎟ ⎟ 
⎜  ⎟    ⎜ ⎜  ⎟  ⎜  ⎟ ⎟ 
⎝ W ⎠    ⎝ ⎝ Z ⎠  ⎝ ZO ⎠ ⎠ 

 
where, 
 

  ⎛ –sin λO cos λO 0 ⎞ 
  ⎜    ⎟ 

R = ⎜ –sin ϕO cos λO –sin ϕO sin λO cos ϕO ⎟ 
  ⎜    ⎟ 
  ⎝ cos ϕO cos λO cos ϕO sin λO sin ϕO ⎠ 

 
Or, expressed as scalar equations:  
 
  U = – (X–XO) sin λO + (Y–YO) cos λO 

V = – (X–XO) sin ϕO cos λO – (Y–YO) sin ϕO sin λO + (Z–ZO) cos ϕO 
W = (X–XO) cos ϕO cos λO + (Y–YO) cos ϕO sin λO + (Z–ZO) sin ϕO  

 
The reverse formulas to calculate geocentric coordinates from topocentric coordinates are: 
 

⎛ X ⎞    ⎛ U ⎞  ⎛ XO ⎞ 
⎜  ⎟    ⎜  ⎟  ⎜  ⎟ 
⎜ Y ⎟ = R-1 * ⎜ V ⎟ + ⎜ YO ⎟ 
⎜  ⎟    ⎜  ⎟  ⎜  ⎟ 
⎝ Z ⎠    ⎝ W ⎠  ⎝ ZO ⎠ 

 
where, 
 

    ⎛ –sin λ0 –sin ϕ0 cos λ0 cos ϕ0 cos λ0 ⎞ 
    ⎜    ⎟ 

R-1 = RT = ⎜ cos λ0 –sin ϕ0 sin λ0 cos ϕ0 sin λ0 ⎟ 
    ⎜    ⎟ 
    ⎝ 0 cos ϕ0  sin ϕ0 ⎠ 

 
and, as for the forward case, ϕO and λO are calculated through the formulas in Section 2.2.1. 
 
Or, expressed as scalar equations:  
 

X = XO – U sin λO – V sin ϕO cos λO + W cos ϕO cos λO 
Y = YO + U cos λo – V sin ϕO sin λΟ  + W cos ϕO sin λO  
Z = ZO + V cos ϕO + W sin ϕO  
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Example: 
For Geocentric CRS = WGS 84 (EPSG CRS code 4978) 

and   
Topocentric origin Xo  = 3652 755.3058 m 
Topocentric origin Yo  =   319 574.6799 m 
Topocentric origin Zo = 5201 547.3536 m 

 
Ellipsoid parameters: a = 6378137.0 metres  1/f = 298.2572236 

 
First calculate additional ellipsoid parameters: 

e2  = 0.006694380 ε = 0.006739497 b = 6356752.314 
 
Next, derive ϕO, λO from Xo,Yo,Zo by the formulas given in Section 2.2.1: 

p = 3666708.2376  
q = 0.9583523313  
ϕO = 0.9599310885 rad 
λO = 0.0872664625 rad 

 
Forward calculation for point with geocentric coordinates:  

X = 3771 793.968 m Y =  140 253.342 m Z = 5124 304.349 m 
 
gives topocentric coordinates 

U = –189 013.869 m V = –128 642.040 m W =    – 4 220.171 m 
 
The reverse calculation contains no intermediate terms other than those solved for above and is a trivial 
reversal of the forward. 
  
 
2.2.3 Geographic/topocentric conversions 
(EPSG dataset coordinate operation method code 9837) 
 
Topocentric coordinates may be derived from geographic coordinates indirectly by concatenating the 
geographic/geocentric conversion described in 2.2.1 above with the geocentric/topocentric conversion 
described in 2.2.2 above. Alternatively the conversion may be made directly: 
 
To convert latitude ϕ, longitude λ and ellipsoidal height h into topocentric coordinates U,V,W:  
 

U = (ν + h) cos ϕ sin (λ – λO) 
V = (ν + h) [sin ϕ cos ϕO – cos ϕ sin ϕO cos (λ – λO)] + e2 (νO sin ϕO – ν sin ϕ ) cos ϕO  
W = (ν + h) [sin ϕ sin ϕO + cos ϕ cos ϕO cos (λ – λO)] + e2 (νO sin ϕO – ν sin ϕ ) sin ϕO – (νO + hO) 

 
where ϕO, λO, hO are the ellipsoidal coordinates of the topocentric origin 
 
and  ν is the radius of curvature in the prime vertical at latitude ϕ = a /(1 – e2sin2ϕ)0.5 

νO is the radius of curvature in the prime vertical at latitude ϕO = a /(1 – e2sin2ϕO)0.5 
 e is the eccentricity of the ellipsoid where e2 = (a2 – b2)/a2 = 2f – f2 
 
 
The reverse formulae to convert topocentric coordinates (U, V, W) into latitude, longitude and ellipsoidal 
height (ϕ, λ, h) first draws on the reverse case of section 2.2.2 to derive geocentric coordinates X, Y, Z and 
then on the reverse case in section 2.2.1 to derive latitude, longitude and height.  
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First, 
X = XO – U sin λO – V sin ϕO cos λO + W cos ϕO cos λO  
Y = YO + U cos λO – V sin ϕO sin λO + W cos ϕO sin λO 
Z = ZO + V cos ϕO + W sin ϕO 

 
where, 

XO = (νO + hO) cos ϕO cos λO  
YO = (νO + hO) cos ϕO sin λO 
ZO = [(1 – e2) νO + hO]sin ϕO 
ϕO, λO, hO are the ellipsoidal coordinates of the topocentric origin, 
νO is the radius of curvature in the prime vertical at latitude ϕO = a /(1 – e2sin2ϕO)0.5, and 
e is the eccentricity of the ellipsoid where e2 = (a2 – b2)/a2 = 2f – f2. 

 
Then, 

ϕ = atan[(Z + ε b sin3q) / (p – e2 a cos3q)] 
λ = atan Y/X 

where 
 ε = e2 / (1 – e2) 
 b = a(1 – f) 
 p = (X2 + Y2)0.5 
 q = atan[(Z a) / (p b)] 
 λ is relative to the Greenwich prime meridian. 
 
and 

h = (p / cos ϕ) – ν 
where 

ν is the radius of curvature in the prime vertical at latitude ϕ = a /(1 – e2sin2ϕ)0.5 
 
Example: 
 

For Geographic 3D CRS = WGS 84 (EPSG CRS code 4979) 
and     

Topocentric origin latitude  ϕO 55°00'00.000"N = 0.95993109 rad 
Topocentric origin longitude  λO   5°00'00.000"E = 0.08726646 rad 
Topocentric origin ellipsoidal height  hO 200 metres   

 
Ellipsoid parameters: a = 6378137.0 metres  1/f = 298.2572236 

 
First calculate additional ellipsoid parameter e2 and radius of curvature νO at the topocentric origin: 

e2  = 0.006694380 νO = 6392510.727 
 
Forward calculation for:  

Latitude ϕ = 53°48'33.82"N = 0.93915110 rad 
Longitude λ = 2°07'46.38"E = 0.03716765 rad 
Height h = 73.0 metres   

 
ν = 6392088.017 

then   
U = –189 013.869 m 
V = –128 642.040 m 
W =    – 4 220.171 m 

 
Reverse calculation for: 
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U = –189 013.869 m 
V = –128 642.040 m 
W =    – 4 220.171 m 

 
First calculate additional ellipsoid parameter e2 and radius of curvature νO at the topocentric origin: 

e2  = 0.006694380 νO = 6392510.727 
 
then the following intermediate terms: 
 

XO = 3652 755.306  ε = 0.0067394967 
YO =   319 574.680  b = 6356 752.314 
ZO = 5201 547.353  p = 3774 400.712 
    q = 0.937549875 
X = 3771 793.968  ϕ = 0.9391511015 rad 
Y =   140 253.342  ν = 6392 088.017 
Z = 5124 304.349  λ = 0.03716765908 rad 

 
for a final result of:  
 

Latitude ϕ = 53°48'33.820"N 
Longitude λ = 2°07'46.380"E 
Height h = 73.0 metres 

 
 
2.2.4 Geographic 3D to 2D conversions 
(EPSG dataset coordinate operation method code 9659) 
 
The forward case is trivial. A 3-dimensional geographic coordinate reference system comprising of geodetic 
latitude, geodetic longitude and ellipsoidal height is converted to its 2-dimensional subset by the simple 
expedient of dropping the height. 
 
The reverse conversion, from 2D to 3D, is indeterminate. It is however a requirement when a geographic 2D 
coordinate reference system is to be transformed using a geocentric method which is 3-dimensional (see 
section 2.4.4.1 below). In practice an artificial ellipsoidal height is created and appended to the geographic 
2D coordinate reference system to create a geographic 3D coordinate reference system referenced to the 
same geodetic datum. The assumed ellipsoidal height is usually either set to the gravity-related height of a 
position in a compound coordinate reference system, or set to zero. As long as the height chosen is within a 
few kilometres of sea level, no error will be induced into the horizontal position resulting from the later 
geocentric transformation; the vertical coordinate will however be meaningless. 
 
Example: 
A location in the ETRS89 Geographic 3D coordinate reference system 
 latitude ϕs = 53°48'33.82"N 
 longitude λs =   2°07'46.38"E 
and ellipsoidal height hs = 73.0m 
 
is converted to the ETRS89 Geographic 2D coordinate reference system as  

latitude ϕs = 53°48'33.82"N 
longitude λs =   2°07'46.38"E 

 
For the reverse conversion of the same point in the ETRS89 Geographic 2D coordinate reference system 
with horizontal coordinates of 

latitude ϕs = 53°48'33.82"N 
longitude λs =   2°07'46.38"E 
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an arbitary value is given to the ellipsoidal height resulting in coordinates in the ETRS89 Geographic 3D 
coordinate reference system of  
 latitude ϕs = 53°48'33.82"N 
 longitude λs =   2°07'46.38"E 
and ellipsoidal height hs = 0.0m 
 
 

2.3 Coordinate Operation Methods that can be conversions or transformations 
 
In theory, certain coordinate operation methods do not readily fit the ISO 19111 classification of being either 
a coordinate conversion (no change of datum involved) or a coordinate transformation. These methods 
change coordinates directly from one coordinate reference system to another and may be applied with or 
without change of datum, depending upon whether the source and target coordinate reference systems are 
based on the same or different datums. In practice, most usage of these methods does in fact include a change 
of datum. OGP follows the general mathematical usage of these methods and classifies them as 
transformations. 
 
2.3.1 Polynomial transformations 
 
Note: In the sections that follow, the general mathematical symbols X and Y representing the axes of a 
coordinate reference system must not be confused with the specific axis abbreviations or axis order in 
particular coordinate reference systems. 
 
2.3.1.1 General case 
 
Polynomial transformations between two coordinate reference systems are typically applied in cases where 
one or both of the coordinate reference systems exhibits lack of homogeneity in orientation and scale.  The 
small distortions are then approximated by polynomial functions in latitude and longitude or in easting and 
northing. Depending on the degree of variability in the distortions, approximation may be carried out using 
polynomials of degree 2, 3, or higher.  In the case of transformations between two projected coordinate 
reference systems, the additional distortions resulting from the application of two map projections and a 
datum transformation can be included in a single polynomial approximation function. 
 
Polynomial approximation functions themselves are subject to variations, as different approximation 
characteristics may be achieved by different polynomial functions.  The simplest of all polynomials is the 
general polynomial function. In order to avoid problems of numerical instability this type of polynomial 
should be used after reducing the coordinate values in both the source and the target coordinate reference 
system to ‘manageable’ numbers, between –10 and +10 at most.  This is achieved by working with offsets 
relative to a central evaluation point, scaled to the desired number range by applying a scaling factor to the 
coordinate offsets. 
 
Hence an evaluation point is chosen in the source coordinate reference system (XS0, YS0) and in the target 
coordinate reference system (XT0, YT0).  Often these two sets of coordinates do not refer to the same physical 
point but two points are chosen that have the same coordinate values in both the source and the target 
coordinate reference system.  (When the two points have identical coordinates, these parameters are 
conveniently eliminated from the formulas, but the general case where the coordinates differ is given here). 
 
The selection of an evaluation point in each of the two coordinate reference systems allows the point 
coordinates in both to be reduced as follows: 

XS – XS0  
YS – YS0 

and 
XT – XT0  
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YT – YT0 
These coordinate differences are expressed in their own unit of measure, which may not be the same as that 
of the corresponding coordinate reference system.5) 
 
A further reduction step is usually necessary to bring these coordinate differences into the desired numerical 
range by applying a scaling factor to the coordinate differences in order to reduce them to a value range that 
may be applied to the polynomial formulae below without introducing numerical precision errors: 

 

U = mS (XS – XS0)  
V = mS (YS – YS0) 

 
where  

XS , YS  are coordinates in the source coordinate reference system, 
XS0 , YS0 are coordinates of the evaluation point in the source coordinate reference system, 
mS is the scaling factor applied the coordinate differences in the source coordinate reference system. 
 

The normalised coordinates U and V of the point whose coordinates are to be transformed are used as input 
to the polynomial transformation formula. In order to control the numerical range of the polynomial 
coefficients An and Bn the output coordinate differences dX and dY are multiplied by a scaling factor, mT. 
 
mT.dX = A0 + A1U + A2V + A3U2 + A4UV + A5V2 (to degree 2) 
 + A6U3 + A7U2V + A8UV2 + A9V3 (degree 3 terms) 
 + A10U4 + A11U3V + A12U2V2 + A13UV3 + A14V4 (degree 4 terms) 
 + A15U5 + A16U4V + A17U3V2 + A18U2V3 + A19UV4 + A20V5 (degree 5 terms) 
 + A21U6 + A22U5V + A23U4V2 + A24U3V3 + A25U2V4 + A26UV5 + A27V6 (degree 6 terms) 
 + … + A104V13 (degree 13 terms) 
 
mT.dY = B0 + B1U + B2V + B3U2 + B4UV + B5V2 (to degree 2) 
 + B6U3 + B7U2V + B8UV2 + B9V3 (degree 3 terms) 
 + B10U4 + B11U3V + B12U2V2 + B13UV3 + B14V4 (degree 4 terms) 
 + B15U5 + B16U4V + B17U3V2 + B18U2V3 + B19UV4 + B20V5 (degree 5 terms) 
 + B21U6 + B22U5V + B23U4V2 + B24U3V3 + B25U2V4 + B26UV5 + B27V6 (degree 6 terms) 
 + … + B104V13 (degree 13 terms) 
 
from which dX and dY are evaluated. These will be in the units of the target coordinate reference system. 
 
In the EPSG dataset, the polynomial coefficients are given as parameters of the form Aumvn and Bumvn, 
where m is the power to which U is raised and n is the power to which V is raised. For example, A17 is 
represented as coordinate operation parameter Au3v2. 
 
The relationship between the two coordinate reference systems can now be written as follows: 
 
 (XT – XTO) = (XS – XSO) + dX  

(YT – YTO) = (YS – YSO) + dY  
or 
 XT = XS – XSO  + XTO + dX  

YT = YS – YSO + YTO + dY  
 
where: 

XT , YT  are coordinates in the target coordinate reference system, 

120120                                                        
5 ) If the source and/or the target coordinate reference system are geographic, the coordinates themselves may be 
expressed in sexagesimal degrees (degrees, minutes, seconds), which cannot be directly processed by a mathematical 
formula. 
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XS , YS  are coordinates in the source coordinate reference system, 
XSO , YSO are coordinates of the evaluation point in the source coordinate reference system, 
XTO , YTO  are coordinates of the evaluation point in the target coordinate reference system, 
dX, dY   are derived through the scaled polynomial formulas. 

 
Other (arguably better) approximating polynomials are described in mathematical textbooks such as “Theory 
and applications of numerical analysis”, by G.M. Phillips and P.J. Taylor (Academic Press, 1973). 
 
 
Example: General polynomial of degree 6 (EPSG dataset coordinate operation method code 9648) 
For coordinate transformation TM75 to ETRS89 (1) 
   
 Ordinate 1 of evaluation point XO in source CRS: XSO = ϕ SO = 53°30'00.000"N  = +53.5 degrees 
 Ordinate 2 of evaluation point YO  in source CRS: YSO  = λSO =   7°42'00.000"W  = –  7.7 degrees 
 Ordinate 1 of evaluation point XO in target CRS  : XTO = ϕ TO = 53°30'00.000"N  = +53.5 degrees 
 Ordinate 2 of evaluation point YO  in target CRS :     YSO  = λTO =   7°42'00.000"W  = –  7.7 degrees 
 Scaling factor for source CRS coordinate differences:  mS = 0.1 
 Scaling factor for target CRS coordinate differences:   mT = 3600 
 
 Coefficients (see EPSG dataset transformation code 1041 for complete set of values): 
 A0 = 0.763 A1 = – 4.487 …. A24 = – 265.898 ...  A27 = 0 
 B0 = – 2.810 B1 = – 0.341 …. B24 = – 853.950 ...  B27 = 0 
 
Forward calculation for: 
  Latitude ϕ TM75  = Xs = 55°00'00"N =     + 55.000 degrees 
  Longitude λ TM75  = Ys =      6°30'00"W =     –   6.500 degrees    
 
 XS – XSO = ϕ TM75 – ϕ S0 = 55.0 – 53.5    = 1.5 degrees 
 YS – YSO =  λ TM75 – λS0  = –6.5 – (– 7.7) = 1.2 degrees 
 
 U = mS (XS – XS0) =  mS (ϕ TM75 – ϕ S0)  = 0.1*(1.5)  = 0.15  
 V = mS (YS – YS0) =  mS (λ TM75 – λS0 )   = 0.1*(1.2)  = 0.12  
 

dX = (A0 + A1U + ... +A5V2 + ... + A24U3V3) / mT 
= [0.763 + (–4.487 * 0.15) + ... + (0.183 * 0.122) + ... + (–265.898 * 0.153 * 0.123)] / 3600 

 
dY = (B0 + B1U + ... + B24U3V3) / mT 
 = [ – 2.81+ (– 0.341 * 0.15) + ... + (– 853.95* 0.153 * 0.123)] / 3600 
  

 to degree 2 degree 3 degree 4 degree 5 degree 6 Sum / mT 
dX =  0.1029127 -0.002185407 0.0064009440 0.0014247770 -0.0015507171 0.0000297229 
dY =  -3.3955340 0.022364019 -0.0230149836 -0.0156886729 -0.0049802364 -0.0009491261 

 
 
Then Latitude   ϕ ETRS89  =   XT  =  XS + dX  =  55.0 + 0.00002972 degrees =  55°00'00.107"N 
 Longitude  λ ETRS89   =   YT  = YS + dY = – 6.5 – 0.00094913 degrees  =   6°30'03.417"W 
 
 
Polynomial reversibility 
Approximation polynomials are in a strict mathematical sense not reversible, i.e. the same polynomial 
coefficients cannot be used to execute the reverse transformation.   
 
In principle two options are available to execute the reverse transformation: 

1. By applying a similar polynomial transformation with a different set of polynomial coefficients for 
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the reverse polynomial transformation. This would result in a separate forward and reverse 
transformation being stored in the EPSG dataset (or any other geodetic data repository). 

 
2. By applying the polynomial transformation with the same coefficients but with their signs reversed 

and then iterate to an acceptable solution, the number of iteration steps being dependent on the 
desired accuracy. (Note that only the signs of the polynomial coefficients should be reversed and not 
the coordinates of the evaluation points or the scaling factors!)  The iteration procedure is usually 
described by the information source of the polynomial transformation. 

 
However, under certain conditions, described below, a satisfactory solution for the reverse transformation 
may be obtained using the forward coefficient values in a single step, rather than multiple step iteration.  If 
such a solution is possible, in the EPSG dataset the polynomial coordinate transformation method is 
classified as a reversible polynomial of degree n. 
 
A (general) polynomial transformation is reversible only when the following conditions are met. 

1. The co-ordinates of source and target evaluation point are (numerically) the same. 
2. The unit of measure of the coordinate differences in source and target coordinate reference system 

are the same. 
3. The scaling factors applied to source and target coordinate differences are the same. 
4. The spatial variation of the differences between the coordinate reference systems around any given 

location is sufficiently small. 
 
Clarification on conditions for polynomial reversibility: 
Re 1 and 2 - In the reverse transformation the roles of the source and target coordinate reference systems 

are reversed.  Consequently, the co-ordinates of the evaluation point in the source coordinate 
reference system become those in the target coordinate reference system in the reverse 
transformation. Usage of the same transformation parameters for the reverse transformation will 
therefore only be valid if the evaluation point coordinates are numerically the same in source and 
target coordinate reference system and in the same units.  That is, XS0 = XT0 = X0 and YS0 = YT0 = 
Y0. 

Re 3 -  The same holds for the scaling factors of the source and target coordinate differences and for the units 
of measure of the coordinate differences. That is, mS = mT = m. 

Re 4 - If conditions 1, 2 and 3 are all satisfied it then may be possible to use the forward polynomial 
algorithm with the forward parameters for the reverse transformation. This is the case if the spatial 
variations in dX and dY around any given location are sufficiently constant.  The signs of the 
polynomial coefficients are then reversed but the scaling factor and the evaluation point coordinates 
retain their signs. If these spatial variations in dX and dY are too large, for the reverse transformation 
iteration would be necessary.   It is therefore not the algorithm that determines whether a single step 
solution is sufficient or whether iteration is required, but the desired accuracy combined with the 
degree of spatial variability of dX and dY. 

 
An example of a reversible polynomial is transformation is ED50 to ED87 (1) for the North Sea.  The 
suitability of this transformation to be described by a reversible polynomial can easily be explained. In the 
first place both source and target coordinate reference systems are of type geographic 2D. The typical 
difference in coordinate values between ED50 and ED87 is in the order of 2 metres (≈10-6 degrees) in the 
area of application. The polynomial functions are evaluated about central points with coordinates of 55°N, 0°
E in both coordinate reference systems. The reduced coordinate differences (in degrees) are used as input 
parameters to the polynomial functions. The output coordinate differences are corrections to the input 
coordinate offsets of about 10-6 degrees. This difference of several orders of magnitude between input and 
output values is the property that makes a polynomial function reversible in practice (although not in a 
formal mathematical sense). 

The error made by the polynomial approximation formulas in calculating the reverse correction is of the 
same order of magnitude as the ratio of output versus input: 

output error output value 



OGP Surveying and Positioning Guidance Note number 7, part 2 –  November2009 
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org. 

 

Page 90 of 120 

⎯⎯⎯⎯⎯  ≈ ⎯⎯⎯⎯⎯  (≈ 10-6) 
input error input value 
 
As long as the input values (the coordinate offsets from the evaluation point) are orders of magnitude larger 
than the output (the corrections), and provided the coefficients are used with changed signs, the polynomial 
transformation may be considered to be reversible.  
 
Hence the EPSG dataset acknowledges two classes of general polynomial functions, reversible and non-
reversible, as distinguished by whether or not the coefficients may be used in both forward and reverse 
transformations, i.e. are reversible. The EPSG dataset does not describe the iterative solution as a separate 
algorithm. The iterative solution for the reverse transformation, when applicable, is deemed to be implied by 
the (forward) algorithm. 
 
Example:  Reversible polynomial of degree 4 (EPSG dataset coordinate operation method code 9651) 
For coordinate transformation ED50 to ED87 (1) 
 
 Ordinate 1 of evaluation point:  XO = ϕO  =   55°00'00.000"N  = +55 degrees 
 Ordinate 2 of evaluation point:  YO  = λO    =     0°00'00.000"E  =   +0 degrees 
 
 Scaling factor for coordinate differences: m = 1.0  
 

Parameters: 
A0 = – 5.56098E-06 A1 = – 1.55391E-06 ... A14 = – 4.01383E-09 
B0 = + 1.48944E-05 B2 = + 2.68191E-05 ... B14 = + 7.62236E-09 

  
Forward calculation for:  
 Latitude ϕ ED50  = Xs = 52°30'30"N =     + 52.508333333 degrees 
 Longitude λ ED50  = Ys =   2°E  =      + 2.0 degrees    
 
 U = m * (XS – X0)  = m * (ϕ ED50 – ϕ 0)  = 1.0 * (52.508333333 – 55.0) = – 2.491666667 degrees 
 V = m * (YS – Y0) = m * (λ ED50 – λ0)  = 1.0 * (2.0 – 0.0) = 2.0 degrees 
 
 dX = (A0 + A1U + ... + A14V4) / kCD 
  = [– 5.56098E–06 + (– 1.55391E-06 * – 2.491666667) + ... + (– 4.01383E-09 * 2.0^4)]/1.0 
  = – 3.12958E–06 degrees 
  
 dY= (B0 + B1U + ... + B14V4) / kCD 

 = [+1.48944E–05 + (2.68191E-05 * – 2.491666667) + ... + (7.62236E-09 * 2.0^4)]/1.0 
  = +9.80126E–06 degrees 
 
Then: Latitude    ϕ ED87 = XT = XS + dX =  52.508333333 – 3.12958E–06 degrees = 52°30'29.9887"N 
 Longitude  λ ED87 = YT = YS + dY                                                                 =   2°00'00.0353"E 
 
 
Reverse calculation for coordinate transformation ED50 to ED87 (1). 
The transformation method for the ED50 to ED87 (1) coordinate transformation, 4th-order reversible 
polynomial, is reversible. The same formulas may be applied for the reverse calculation, but coefficients A0 
through A14 and B0 through B14 are applied with reversal of their signs. Sign reversal is not applied to the 
coordinates of the evaluation point or scaling factor for coordinate differences. Thus: 
 Ordinate 1 of evaluation point:  XO = ϕO  =   55°00'00.000"N  = +55 degrees 
 Ordinate 2 of evaluation point:  YO  = λO    =     0°00'00.000"E  =   +0 degrees 
 Scaling factor for coordinate differences: m  = 1.0 
 
 A0  = +5.56098E-06 A1 = +1.55391E-06 ... A14 = +4.01383E-09 
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 B0  = –1.48944E-05 B1 = –2.68191E-05 ... B14 = –7.62236E-09 
 
Reverse calculation for:  
 Latitude    ϕ ED87   = XS = 52°30'29.9887"N   =     +52.5083301944 degrees 
 Longitude λ ED87      = YS =    2°00'00.0353"E   =     +2.0000098055 degrees    
 
 U = 1.0 * (52.5083301944 – 55.0) = – 2.4916698056 degrees 
 V = 1.0 * (2.0000098055 – 0.0) = 2.0000098055 degrees 
 
 
 dX = (A0 + A1U + ... + A14V4)/k 

      = [+5.56098E-06 + (1.55391E– 06 * – 2.491666667) + ...  
... + (4.01383E-09 * 2.0000098055^4)]/1.0 

       = +3.12957E–06 degrees 
  
 dY = (B0 + B1.U + ... + B14.V4)/k 

      = [– 1.48944E-05 + (-2.68191E-05 * -2.491666667) + ... 
... + (– 7.62236E-09 * 2.0000098055^4)]/1.0 

       = – 9.80124E–06 degrees 
 
Then: Latitude    ϕED50 =  XT = XS + dX = 52.5083301944 + 3.12957E–06  degrees = 52°30'30.000"N 
 Longitude  λED50 =  YT = YS + dY =                                                                   =   2°00'00.000"E 
 
 
2.3.1.2 Polynomial transformation with complex numbers 
 
The relationship between two projected coordinate reference systems may be approximated more elegantly 
by a single polynomial regression formula written in terms of complex numbers. The advantage is that the 
dependence between the ‘A’ and ‘B’ coefficients (for U and V) is taken into account in the formula, resulting 
in fewer coefficients for the same order polynomial. A polynomial to degree 3 in complex numbers is used in 
Belgium. A polynomial to degree 4 in complex numbers is used in The Netherlands for transforming 
coordinates referenced to the Amersfoort / RD system to and from ED50 / UTM. 
 
mT (dX + i dY) = (A1 + i A2) (U + i V) + (A3 + i A4) (U + i V)2  (to degree 2) 

  + (A5 + i A6) (U + i V)3  (additional degree 3 terms) 
  + (A7 + i A8) (U + i V)4  (additional degree 4 terms) 

 
where  U = mS (XS – XS0) 
 V = mS (YS – YS0) 
and mS, mT are the scaling factors for the coordinate differences in the source and target coordinate reference 
systems. 
 
The polynomial to degree 4 can alternatively be expressed in matrix form as 
                  
               ⎛ U ⎞ 
               ⎜ V ⎟ 
⎛ mT.dΧ ⎞   ⎛ +A1 -A2 +A3 -A4 +A5 -A6 +A7 -A8 ⎞  ⎜ U2–V2 ⎟ 
⎜  ⎟  = ⎜         ⎟ * ⎜ 2UV ⎟ 

⎝ mT.dΥ ⎠   ⎝ +A2 +A1 +A4 +A3 +A6 +A5  +A8 +A7 ⎠  ⎜ U3–3UV2 ⎟ 
               ⎜ 3U2V–V3 ⎟ 
               ⎜ U4–6U2V2 + V4 ⎟ 
               ⎝

  
4U3V–4UV3 ⎠ 
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Then as for the general polynomial case above 
XT  = XS – XSO + XTO + dX 
YT  = YS – YSO + YTO + dY 
 

where, as above, 
XT , YT are coordinates in the target coordinate system, 
XS , YS are coordinates in the source coordinate system, 
XSO , YSO are coordinates of the evaluation point in the source coordinate reference system, 
XTO , YTO are coordinates of the evaluation point in the target coordinate reference system. 

 
Note that the zero order coefficients of the general polynomial, A0 and B0, have apparently disappeared.  In 
reality they are absorbed by the different coordinates of the source and of the target evaluation point, which 
in this case, are numerically very different because of the use of two different projected coordinate systems 
for source and target. 
 
The transformation parameter values (the coefficients) are not reversible.  For the reverse transformation a 
different set of parameter values are required, used within the same formulas as the forward direction. 
 
Example: Complex polynomial of degree 4 (EPSG dataset coordinate operation method code 9653) 
Coordinate transformation: Amersfoort / RD New to ED50 / UTM zone 31N (1): 
 
Coordinate transformation parameter name Formula 

symbol 
Parameter 
value 

Unit 

ordinate 1 of the evaluation point in the source CS XSO 155,000.000 metre 
ordinate 2 of the evaluation point in the source CS YSO 463,000.000 metre 
ordinate 1 of the evaluation point in the target CS XTO 663,395.607 metre 
ordinate 2 of the evaluation point in the target CS YTO 5,781,194.380 metre 
scaling factor for source CRS coordinate differences mS 10–5  
scaling factor for target CRS coordinate differences mT 1.0  
A1 A1 –51.681 coefficient 
A2 A2 +3,290.525 coefficient 
A3 A3 +20.172 coefficient 
A4 A4 +1.133 coefficient 
A5 A5 +2.075 coefficient 
A6 A6 +0.251 coefficient 
A7 A7 +0.075 coefficient 
A8 A8 –0.012 coefficient 
 

 
For input point: 

Easting,    XAMERSFOORT/RD  = XS = 200,000.00 metres 
Northing, YAMERSFOORT/RD  = YS = 500,000.00 metres 

 
 U = mS (XS – XS0) =  (200,000 – 155,000) 10-5  =  0.45 
 V = mS (YS – YS0) =  (500,000 – 463,000) 10-5  =  0.37 
 
 dX = (–1,240.050) / 1.0 
 dY =  (1,468.748) / 1.0 
 
Then: Easting, EED50/UTM31 =  XT  = XS – XSO + XTO + dX 
  =  200,000 – 155,000 + 663,395.607 + (–1,240.050) 

 =  707,155.557 metres 
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 Northing, NED50/UTM31N  = YT  = YS – YS0 + YT0 + dY 
                  =  500,000 – 463,000 + 5,781,194.380 + 1,468.748 

               =  5,819,663.128 metres 
 
 
2.3.1.3 Polynomial transformation for Spain 
(EPSG dataset coordinate operation method code 9617) 
 
The original geographic coordinate reference system for the Spanish mainland was based on Madrid 1870 
datum, Struve 1860 ellipsoid, with longitudes related to the Madrid meridian.  Three second-order 
polynomial expressions have been empirically derived by El Servicio Geográfico del Ejército to transform 
geographic coordinates based on this system to equivalent values based on the European Datum of 1950 
(ED50).  The polynomial coefficients derived can be used to transform coordinates from the Madrid 1870 
(Madrid) geographic coordinate reference system to the ED50 system.  Three pairs of expressions have been 
derived: each pair is used to calculate the shift in latitude and longitude respectively for (i) a mean for all 
Spain, (ii) a better fit for the north of Spain, (iii) a better fit for the south of Spain. 
 
The polynomial expressions are: 
 

dϕ (arc sec) = A0 + (A1*ϕs) + (A2*λs) + (A3*Hs) 
dλ (arc sec) =  B00 + B0  + (B1*ϕs) + (B2*λs) + (B3*Hs) 

 
where latitude ϕs and longitude λs are in decimal degrees referred to the Madrid 1870 (Madrid) geographic 
coordinate reference system and Hs is gravity-related height in metres. B00 is the longitude (in seconds) of the 
Madrid meridian measured from the Greenwich meridian; it is the value to be applied to a longitude relative 
to the Madrid meridian to transform it to a longitude relative to the Greenwich meridian. 
 
The results of these expressions are applied through the formulas: 
 ϕED50 = ϕM1870(M)  + dϕ 
and  λED50 = λM1870(M)  + dλ. 
 
Example: 
Input point coordinate reference system: Madrid 1870 (Madrid) (geographic 2D) 
 Latitude ϕs       =  42°38'52.77"N  
    = +42.647992 degrees 

 
 Longitude λs    =    3°39'34.57"E of Madrid  
                            = +3.659603 degrees from the Madrid meridian. 
 

Gravity-related height Hs  =  0 m 
 
For the north zone transformation: 
 A0 = 11.328779  B00 = -13276.58 

A1 = -0.1674  B0 = 2.5079425 
 A2 = -0.03852  B1 = 0.8352 
 A3 = 0.0000379  B2 = -0.00864 
    B3 = -0.0000038 
 

dϕ = +4.05 seconds 
Then latitude  ϕ ED50  = 42°38'52.77"N + 4.05" 

= 42°38'56.82"N 
 

 dλ  = -13238.484seconds  = -3°40'38.484" 
Then longitude  λ ED50  = 3°39'34.57"E – 3°40'38.484" 
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= 0°01'03.914"W of Greenwich. 
 
 
2.3.2 Miscellaneous Linear Coordinate Operations 
 
An affine 2D transformation is used for converting or transforming a coordinate reference system possibly 
with non-orthogonal axes and possibly different units along the two axes to an isometric coordinate reference 
system (i.e. a system of which the axes are orthogonal and have equal scale units, for example a projected 
CRS).  The transformation therefore involves a change of origin, differential change of axis orientation and a 
differential scale change. The EPSG dataset distinguishes four methods to implement this class of coordinate 
operation: 

1)  the parametric representation, 

2)  the geometric representation,  

3)  a simplified case of the geometric representation known as the Similarity Transformation in 
which the degrees of freedom are constrained. 

4)  a variation of the geometric representation for seismic bin grids. 

 

2.3.2.1  Affine Parametric Transformation 
(EPSG dataset coordinate operation method code 9624) 
 
Mathematical and survey literature usually provides the parametric representation of the affine 
transformation. The parametric algorithm is commonly used for rectification of digitised maps. It is often 
embedded in CAD software and Geographic Information Systems where it is frequently referred to as 
“rubber sheeting”. 
 
The formula in matrix form is as follows: 

 
 VT  = VTO + R * VS 
where: 

  ⎛ XT ⎞    ⎛ A0 ⎞    ⎛ A1 A2 ⎞      ⎛ XS ⎞ 
VT = ⎜  ⎟  VTO = ⎜  ⎟  R = ⎜   ⎟  and  VS = ⎜  ⎟ 

  ⎝ YT ⎠    ⎝ B0 ⎠    ⎝ B1 B2 ⎠      ⎝ YS ⎠ 
 
or using algebraic coefficients: 
 XT   =  A0  +  A1 * XS  +  A2 * YS 
 YT   =  B0  +  B1 * XS  +  B2 * YS 
where 

XT , YT  are the coordinates of a point P in the target coordinate reference system; 
XS , YS   are the coordinates of P in the source coordinate reference system. 

 
This form of describing an affine transformation is analogous to the general polynomial transformation 
formulas (section 3.1 above). Although it is somewhat artificial, an affine transformation could be considered 
to be a first order general polynomial transformation but without the reduction to source and target 
evaluation points. 
 
Reversibility 
The reverse operation is another affine parametric transformation using the same formulas but with different 
parameter values. The reverse parameter values, indicated by a prime ('), can be calculated from those of the 
forward operation as follows: 
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D = A1 * B2   –   A2 * B1 
A0' = (A2 * B0   –   B2  * A0) / D 
B0' = (B1  * A0   –   A1 * B0) / D 
A1' = +B2 / D 
A2' = – A2 / D 
B1' = – B1 / D 
B2' = +A1 / D 
 
Then 
 XS   =  A0'  +  A1' * XT  +  A2' * YT 
  YS   =  B0'  +  B1' * XT  +  B2' * YT 
 
Or in matrix form: 
 VS   = R -1 * (VT – VTO) 
 
2.3.2.2 Affine General Geometric Transformation  
(EPSG dataset coordinate operation method code 9623) 
 
 

 
 

 Figure 12. Geometric representation of the affine coordinate transformation 
(Please note that to prevent cluttering of the figure the scale parameters of the Xs and Ys axes have been omitted). 

 
 
From the diagram above it can be seen that: 

XTP  =  XTO  +  YSP * sin θY    +  XSP * cos θX   =  XTO +  XSP * cos θX  +  YSP * sin θY 
YTP  =  YTO  +  YSP * cos θY   –  XSP * sin θX       =  YTO  –  XSP * sin θX  +  YSP * cos θY 

 
The scaling of both source and target coordinate reference systems adds some complexity to this formula. 
The operation will often be applied to transform an engineering coordinate reference system to a projected 
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coordinate reference system. The orthogonal axes of the projected coordinate reference system have identical 
same units. The engineering coordinate reference system may have different units of measure on its two 
axes: these have scale ratios of MX and MY respective to the axes of the projected coordinate reference 
system.  
 
The projected coordinate reference system is nominally defined to be in well-known units, e.g. metres. 
However, the distortion characteristics of the map projection only preserve true scale along certain defined 
lines or curves, hence the projected coordinate reference system’s unit of measure is strictly speaking only 
valid along those lines or curves. Everywhere else its scale is distorted by the map projection. For conformal 
map projections the distortion at any point can be expressed by the point scale factor ‘k’ for that point. Please 
note that this point scale factor ‘k’ should NOT be confused with the scale factor at the natural origin of the 
projection, denominated by ‘k0’. (For non-conformal map projections the scale distortion at a point is 
bearing-dependent and will not be described in this document). 
 
It has developed as working practice to choose the origin of the source (engineering) coordinate reference 
system as the point in which to calculate this point scale factor ‘k’, although for engineering coordinate 
reference systems with a large coverage area a point in the middle of the area may be a better choice. 
 
Adding the scaling between each pair of axes and dropping the suffix for point P, after rearranging the terms 
we have the geometric representation of the affine transformation: 
 

XT = XTO   +  XS * k * MX * cos θX   +  YS * k * MY * sin θY 

YT = YTO  –   XS * k * MX * sin θX   +  YS * k * MY * cos θY  
where: 
 
XTO ,YTO = the coordinates of the origin point of the source coordinate reference system, expressed in the 

target coordinate reference system; 
MX , MY  = the length of one unit of the source axis, expressed in units of the target axis, for the first and 

second source and target axes pairs respectively; 
k = point scale factor of the target coordinate reference system at a chosen reference point; 
θX , θY = the angles about which the source coordinate reference system axes XS and YS must be rotated 

to coincide with the target coordinate reference system axes XT and YT respectively (counter-
clockwise being positive). 

 
Alternatively, in matrix form: 
 VT  = VTO + R1 * k * S1 * VS 
where: 

  ⎛ XT ⎞    ⎛ XTO ⎞    ⎛ XS ⎞ 
VT = ⎜  ⎟  VTO = ⎜  ⎟  VS = ⎜  ⎟ 

  ⎝ YT ⎠    ⎝ YTO ⎠    ⎝ YS ⎠ 
and 

  ⎛ cos θX sin θY ⎞    ⎛ MX 0 ⎞ 
R1 = ⎜   ⎟  S1 = ⎜   ⎟ 

  ⎝ –sin θX cos θY ⎠    ⎝ 0 MY ⎠ 
 
or 
 
⎛ XT ⎞  ⎛ XTO ⎞  ⎛ cos θX sin θY ⎞    ⎛ MX 0 ⎞  ⎛ XS ⎞ 
⎜  ⎟ = ⎜  ⎟ + ⎜   ⎟ * k * ⎜   ⎟ * ⎜  ⎟ 
⎝ YT ⎠  ⎝ YTO ⎠  ⎝ –sin θX cos θY ⎠    ⎝ 0 MY ⎠  ⎝ YS ⎠ 
 

 

Comparing the algebraic representation with the parameters of the parameteric form in section 2.3.2.1 
above it can be seen that the parametric and geometric forms of the affine coordinate transformation are 
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related as follows: 

A0  =  XTO   
A1  =  k * MX * cos θX   
A2  =  k * MY * sin θY  
B0  =  YTO   
B1  =   –k * MX * sin θX 
B2  =   k * MY * cos θY 

 
Reversibility 
For the Affine Geometric Transformation, the reverse operation can be described by a different formula, as 
shown below, in which the same parameter values as the forward transformation may be used. In matrix 
form: 

VS   =  (1/k) * S1 –1 * R 1-1 * (VT – VTO) 

or  
 
⎛ XS ⎞  1 ⎛ 1/MX 0 ⎞  ⎛ cos θY –sin θY ⎞  ⎛ XT – XTO ⎞ 
⎜  ⎟ =   ––––  * ⎜   ⎟ * ⎜   ⎟ * ⎜  ⎟ 
⎝ YS ⎠  k .Z ⎝ 0 1/MY ⎠  ⎝ sin θX cos θX ⎠  ⎝ YT – YTO ⎠ 
 
where Z = cos (θX – θY); 
 
Algebraically: 
XS = [(XT  – XTO) * cos θY   –  (YT – YTO) * sin θY ] / [k * MX  * cos (θX – θY)] 
YS = [(XT   – XTO) * sin θX   +  (YT – YTO) * cos θX ] / [k * MY * cos (θX – θY)] 
 
Orthogonal case 
If the source coordinate reference system happens to have orthogonal axes, that is both axes are rotated through 
the same angle to bring them into the direction of the orthogonal target coordinate reference system axes, i.e. 
θX = θY = θ, then the Affine Geometric Transformation can be simplified. In matrix form this is: 
 
 VT  = VTO + R2 * k * S1 * VS 
 
where VT, VTO, S1 and VS are as in the general case but 
 

  ⎛ cos θ sin θ ⎞ 
R2 = ⎜   ⎟ 

  ⎝ –sin θ cos θ ⎠ 
 
Alternatively, 
 
⎛ XT ⎞  ⎛ XTO ⎞  ⎛ cos θ sin θ ⎞    ⎛ MX 0 ⎞  ⎛ XS ⎞ 
⎜  ⎟ = ⎜  ⎟ + ⎜   ⎟ * k * ⎜   ⎟ * ⎜  ⎟ 
⎝ YT ⎠  ⎝ YTO ⎠  ⎝ –sin θ cos θ ⎠    ⎝ 0 MY ⎠  ⎝ YS ⎠ 
 
Algebraically: 
XT = XTO   +   XS * k * MX * cos θ   +   YS * k * MY  * sin θ 

YT = YTO   –   XS * k * MX * sin θ    +   YS * k * MY  * cos θ 

 
where: 
 
XTO ,YTO      =  the coordinates of the origin point of the source coordinate reference system, expressed in the 

target coordinate reference system; 
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MX , MY  = the length of one unit of the source  axis, expressed in units of the target axis, for the X axes 
and the Y axes respectively; 

k = the point scale factor of the target coordinate reference system at a chosen reference point; 
θ = the angle through which the source coordinate reference system axes must be rotated to coincide 

with the target coordinate reference system axes (counter-clockwise is positive). Alternatively, 
the bearing (clockwise positive) of the source coordinate reference system YS-axis measured 
relative to target coordinate reference system north. 

 
The reverse formulas of the general case can also be simplified by replacing θX and θY with θ. In matrix form: 

 

 VS   =  (1/k) * S1 –1 * R2 -1 * (VT – VTO) 

or  
 
⎛ XS ⎞  1 ⎛ 1/MX 0 ⎞  ⎛ cos θ –sin θ ⎞  ⎛ XT – XTO ⎞ 
⎜  ⎟ =   ––––  * ⎜   ⎟ * ⎜   ⎟ * ⎜  ⎟ 
⎝ YS ⎠  k  ⎝ 0 1/MY ⎠  ⎝ sin θ cos θ ⎠  ⎝ YT – YTO ⎠ 
 
Algebraically: 
 
XS = [(XT  – XTO) * cos θ   –  (YT – YTO) * sin θ ] / [k * MX ] 
YS = [(XT   – XTO) * sin θ   +  (YT – YTO) * cos θ] / [k * MY ] 
 
In the EPSG dataset this orthogonal case has been deprecated. The formulas for the general case should be 
used, inserting θ for both θX  and θY. The case has been documented as part of the progression through 
increasing constraints on the degrees of freedom between the general case and the Similarity Transformation. 
  
 
2.3.2.3 Similarity Transformation 
(EPSG dataset coordinate operation method code 9621) 
 
If the source coordinate reference system has orthogonal axes and also happens to have axes of the same 
scale, that is both axes are scaled by the same factor to bring them into the scale of the target coordinate 
reference system axes (i.e. MX = MY = M), then the orthogonal case of the Affine Geometric Transformation 
can be simplified further to a Similarity Transformation.  
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Figure 13.  Similarity Transformation 

 
 
From the above diagram the Similarity Transformation in algebraic form is: 
 XTP = XTO + YSP * M * sin θ  + XSP * M * cos θ 

 YTP = YTO + YSP * M * cos θ  –  XSP * M * sin θ 
 
Dropping the suffix for point P and rearranging the terms 
 XT = XTO  + XS * M * cos θ  + YS * M * sin θ 

 YT = YTO  –  XS * M * sin θ  + YS * M * cos θ 
 
where: 
XTO , YTO    =     the coordinates of the origin point of the source coordinate reference system expressed in the 

target coordinate reference system; 
M           =        the length of one unit in the source coordinate reference system expressed in units of the 

target coordinate reference system; 
θ              = the angle about which the axes of the source coordinate reference system need to be rotated to 

coincide with the axes of the target coordinate reference system, counter-clockwise being 
positive. Alternatively, the bearing of the source coordinate reference system YS-axis measured 
relative to target coordinate reference system north. 

 
The Similarity Transformation can also be described as a special case of the Affine Parametric Transformation 
where coefficients A1 = B2  and  A2 =  –  B1. 
 
In matrix form: 
 
 VT  = VTO + M * R2 * VS 
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where VT, VTO, R2 and VS are as in the Affine Orthogonal Geometric Transformation method, or 
 
⎛ XT ⎞  ⎛ XTO ⎞  ⎛ cos θ  sin θ ⎞  ⎛ XS ⎞ 
⎜  ⎟ = ⎜  ⎟ +   M  * ⎜   ⎟ * ⎜  ⎟ 
⎝ YT ⎠  ⎝ YTO ⎠  ⎝ – sin θ cos θ ⎠  ⎝ YS ⎠ 
 
 
Reversibility 
 
The reverse formula for the Similarity Transformation, in matrix form, is: 

 

 VS   =  (1/M) * R2 -1 * (VT – VTO) 

or  
 
⎛ XS ⎞  1 ⎛ cos θ –sin θ ⎞  ⎛ XT – XTO ⎞ 
⎜  ⎟ =   ––––  * ⎜   ⎟ * ⎜  ⎟ 
⎝ YS ⎠  M  ⎝ sin θ cos θ ⎠  ⎝ YT – YTO ⎠ 
 
Algebraically: 
 
XS = [(XT  – XTO) * cos θ   –  (YT – YTO) * sin θ ] / [M ] 
YS = [(XT   – XTO) * sin θ   +  (YT – YTO) * cos θ] / [M ] 
 
 
Example 
Tombak LNG Plant Grid to Nakhl-e Ghanem / UTM zone 39N 
 
Parameters of the Similarity Transformation: 
XTO =   611267.2865 metres 
YTO = 3046565.8255 metres 
M = 0.9997728332 
θ = 315 degrees 
 
Forward computation for plant grid coordinates x (= XS) = 20000m, y (= YS) = 10000m: 
 
XT  = UTM E  = 611267.2865 + 14138.9230 + (–7069.4615) 
   = 618336.748 m 
 
YT = UTM N = 3046565.8255 – (–14138.9230) + 7069.4615 
  = 3067774.210 m 
 
Reverse computation for UTM coordinates 618336.748 m E, 3067774.210 m: 
 
Plant x = [4998.8642 – (–14996.5925)] / 0.9997728332 
 = 20000.000 m 
 
Plant y = [(– 4998.8642) + 14996.5925)] / 0.9997728332 
 = 10000.000 m 
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When to use the Similarity Transformation 
 
Similarity Transformations can be used when source and target coordinate reference systems 
• each have orthogonal axes, 
• each have the same scale along both axes,  
and 
• both have the same units of measure, 
 
for example between engineering plant grids and projected coordinate reference systems. 
 
Coordinate Operations between two coordinate reference systems where in either system either the scale 
along the axes differ or the axes are not orthogonal should be defined as an Affine Transformation in either 
the parametric or geometric form. But for seismic bin grids see the following section. 
 
 
2.3.2.4 UKOOA P6 Seismic Bin Grid Transformation  
(EPSG dataset coordinate operation method code 9666) 
 
The UKOOA P6/98 exchange format describes a special case of the Affine Geometric Transformation in 
which  
• the source coordinate reference system is a grid; 
• its axes are orthogonal; 
and one or both of the following may apply: 
• the origin of the bin grid (source coordinate reference system) may be assigned non-zero bin grid 

coordinates; 
• the bin grid (source coordinate reference system) units may increase in increments other than 1, i.e. IncSX 

and IncSY 
The method is also described in the SEG-Y revision 1 seismic data exchange format. 
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The defining parameters are: 
UKOOA P6 term Equivalent EPSG dataset term 
Bin grid origin (Io) Ordinate 1 of evaluation point in source CRS (XSO) 
Bin grid origin (Jo) Ordinate 2 of evaluation point in source CRS (YSO) 
Map grid easting of bin grid origin (Eo) Ordinate 1 of evaluation point in target CRS (XTO) 
Map grid northing of bin grid origin (No) Ordinate 2 of evaluation point in target CRS (YTO) 
Scale factor of bin grid (SF) Point scale factor (k) 
Nominal bin width along I axis (I_bin_width) Scale factor for source coordinate reference system 

first axis (MX) 
Nominal bin width along J axis (J_bin_width) Scale factor for source coordinate reference system 

second axis (My) 
Grid bearing of bin grid J axis (θ) Rotation angle of source coordinate reference 

system axes (θ) 
Bin node increment on I axis (I_bin_inc) Bin node increment on I-axis 
Bin node increment on J axis (J_bin_inc) Bin node increment on J-axis 
 
In the orthogonal case of the Affine Geometric Transformation formulas, the terms XS, YS, MX and MY are 
replaced by (XS – XSO), (YS – YSO), (MX / IncSX) and (MY / IncSY) respectively. Thus the forward 
transformation from bin grid to map grid (source to target coordinate reference system) is: 
 
 VT = VTO + R2 * k * S2 * V2 
 
where, as in the orthogonal case of the Affine Geometric Transformation method: 
 

  ⎛ XT ⎞    ⎛ XTO ⎞      ⎛ cos θ sin θ ⎞ 
VT = ⎜  ⎟  VTO = ⎜  ⎟  and  R2 = ⎜   ⎟ 

  ⎝ YT ⎠    ⎝ YTO ⎠      ⎝ –sin θ cos θ ⎠ 
 
but where 
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  ⎛ MX / IncSX 0 ⎞       ⎛ XS – XSO ⎞ 
S2 = ⎜   ⎟  and   V2 = ⎜  ⎟ 
  ⎝ 0 MY / IncSY ⎠       ⎝  YS – YSO ⎠ 

 
That is, 
 
⎛ XT ⎞  ⎛ XTO ⎞  ⎛ cos θ sin θ ⎞    ⎛ MX / IncSX 0 ⎞  ⎛ XS – XSO ⎞ 
⎜  ⎟ = ⎜  ⎟ + ⎜   ⎟ * k * ⎜   ⎟ * ⎜  ⎟ 
⎝ YT ⎠  ⎝ YTO ⎠  ⎝ –sin θ cos θ ⎠    ⎝ 0 MY / IncSY ⎠  ⎝  YS – YSO ⎠ 
 
Algebraically: 
XT = XTO   +   [(XS – XSO) * cos θ * k * MX / IncSX]  +  [(YS – YSO) * sin θ * k * MY / IncSY] 
YT = YTO   –   [(XS – XSO) * sin θ * k * MX / IncSX]   +  [(YS – YSO) * cos θ * k * MY / IncSY] 
 
Using the symbol notation in the UKOOA P6/98 document these expressions are: 
 
               ⎛

  
I_bin_width 0 ⎞     

⎛ E ⎞  ⎛  EO ⎞  ⎛ cos θ sin θ ⎞    ⎜ / I_bin_inc  ⎟  ⎛  I – IO ⎞ 
⎜  ⎟ = ⎜  ⎟ + ⎜   ⎟ * SF * ⎜   ⎟ * ⎜  ⎟ 
⎝ N ⎠  ⎝  NO ⎠  ⎝ –sin θ cos θ ⎠    ⎜ 0 J_bin_width ⎟  ⎝  J – JO ⎠ 
               ⎝  / J_bin_inc ⎠     
 
and 
 
E = EO  +  [(I – IO) * cos θ * SF * I_bin_width / I_bin_inc]   

+  [(J – JO) * sin θ * SF * J_bin_width / J_bin_inc] 
 
N = N0  –  [(I – IO) * sin θ * SF * I_bin_width / I_bin_inc]   

+  [(J – JO) * cos θ * SF * J_bin_width / J_bin_inc] 
 
For the reverse transformation (map grid to bin grid): 
 
 VS   =  (1/k) * S2 –1 * R2 -1 * (VT – VTO) + VSO 
or 
 
⎛ XS ⎞    ⎛ IncSX / MX 0 ⎞  ⎛ cos θ –sin θ ⎞  ⎛  XT – XTO ⎞  ⎛ XSO ⎞ 
⎜  ⎟ = 1/k * ⎜   ⎟ * ⎜   ⎟ * ⎜  ⎟ + ⎜  ⎟ 
⎝ YS ⎠    ⎝ 0 IncSY / MY ⎠  ⎝ sin  cos θ ⎠  ⎝  YT – YTO ⎠  ⎝ YSO ⎠ 
 
or algebraically: 
XS = {[( XT  – XTO) * cos θ  –  (YT – YTO) * sin θ ] * [IncSX  / (k * MX)]} + XSO 

YS = {[(XT   – XTO) * sin θ   +  (YT – YTO) * cos θ] * [IncSY  / (k * MY)]} + YSO 

 
Using the symbol notation in the UKOOA P6/98 document these reverse expressions are: 
 
⎛ I ⎞    ⎛ I_bin_inc / 0 ⎞  ⎛ cos θ –sin θ ⎞  ⎛ E  – EO ⎞  ⎛ IO ⎞ 
⎜  ⎟ = 1/SF * ⎜ I_bin_width  ⎟ * ⎜   ⎟ * ⎜  ⎟ + ⎜  ⎟ 
⎝ J ⎠    ⎜  J_bin_inc / ⎟  ⎝ sin  cos θ ⎠  ⎝ N – NO ⎠  ⎝ JO ⎠ 
      ⎝ 0 I_bin_width ⎠              
 
and 
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I = {[(E  – EO) * cos θ   –  (N – NO) * sin θ ] * [I_bin_inc  / (SF * I_bin_width)]} + IO 

J = {[(E  – EO) * sin θ   +  (N – NO) * cos θ] * [J_bin_inc  / (SF * J_bin_width)]} + JO 
 
 
Example: 
This example is given in the UKOOA P6/98 document. Source coordinate reference system: imaginary 3D 
seismic acquisition bin grid. The two axes are orthogonal, but the bin width on the I-axis (XS axis) is 25 
metres, whilst the bin width on the J-axis (YS axis) is 12.5 metres. The origin of the grid has bin values of 
1,1. 
 
The target coordinate reference system is a projected CRS (WGS 84 / UTM Zone 31N) upon which the 
origin of the bin grid is defined at E = 456781.0, N = 5836723.0.  The projected coordinate reference system 
point scale factor at the bin grid origin is 0.99984. 
 
In the map grid (target CRS), the bearing of the bin grid (source CRS) I and J axes are 110° and 20° 
respectively.  Thus the angle through which the bin grid axes need to be rotated to coincide with the map grid 
axes is +20 degrees. 
 
The transformation parameter values are: 
 
Parameter EPSG symbol P6 symbol Parameter value 
Bin grid origin I XSO Io 1 
Bin grid origin J YSO Jo 1 
Bin grid origin Easting XTO Eo 456781.00 m 
Bin grid origin Northing YTO No 5836723.00 m 
Scale factor of bin grid k SF 0.99984 
Bin Width on I-axis MX I_bin_width 25 m 
Bin Width on J-axis MY J_bin_width 12.5 m 
Map grid bearing of bin grid J-axis θ θ 20 deg 
Bin node increment on I-axis IncSX I_bin_inc 1 
Bin node increment on J-axis IncSY J_bin_inc 1 
 
 
Forward calculation for centre of bin with coordinates: I = 300, J = 247: 
XT = Easting   = XTO   +   [(XS – XSO) * cos θ * k * MX / IncSX]  +  [(YS – YSO) * sin θ * k * MY / IncSY] 

= 456781.000 + 7023.078 + 1051.544  
= 464855.62 m. 

 
YT = Northing = YTO   –   [(XS – XSO) * sin θ * k * MX / IncSX]   +  [(YS – YSO) * cos θ * k * MY / IncSY] 

= 5836723.000 - 2556.192 + 2889.092 
= 5837055.90 m. 

 
Reverse calculation for this point 464 855.62mE, 5 837 055.90mN: 
XS = {[( XT  – XTO) * cos θ  –  (YT – YTO) * sin θ ] * [IncSX  / (k * MX)]} + XSO  

= 300 bins,  
 
YS = {[(XT   – XTO) * sin θ   +  (YT – YTO) * cos θ] * [IncSY  / (k * MY)]} + YSO  

= 247 bins 
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2.4 Coordinate Transformations 
 
2.4.1 Offsets - general  
 
Several transformation methods which utilise offsets in coordinate values are recognised. The offset methods 
may be in n-dimensions. These include longitude rotations, geographic coordinate offsets, Cartesian grid 
offsets and vertical offsets.  
 
Mathematically, if the origin of a one-dimensional coordinate system is shifted along the positive axis and 
placed at a point with ordinate A, then the transformation formula is: 

Xnew = Xold –  A 
However it is common practice in coordinate system transformations to apply the shift as an addition, with 
the sign of the shift parameter value having been suitably reversed to compensate for the practice.  Since 
1999 this practice has been adopted for the EPSG dataset.  Hence transformations allow calculation of 
coordinates in the target system by adding a correction parameter to the coordinate values of the point in the 
source system: 

Xt = Xs + A 
where Xs and Xt are the values of the coordinates in the source and target coordinate systems and A is the 
value of the transformation parameter to transform source coordinate reference system coordinate to target 
coordinate reference system coordinate. 
 
Offset methods are reversible. For the reverse transformation, the offset parameter value is applied with its 
sign reversed. 
 
2.4.1.1 Cartesian Grid Offsets from Form Function 
(EPSG dataset coordinate operation method code 1036) 
 
In the German state of Schleswig-Holstein the Cartesian grid offsets to be applied are determined through 
interpolation within an irregular grid of points at which coordinates in both source and target coordinate 
reference systems are given. The interpolation uses a finite element method form function procedure 
described in papers by Joachim Boljen in Zeitschrift für Vermessungswesen (ZfV, the Journal of the German 
Association of Surveying) volume 128 of April 2003 pages 244-250 and volume 129 of April 2004 pages 
258-260.  
 
2.4.2 Transformations between Vertical Coordinate Reference Systems  
 
2.4.2.1 Vertical Offset  
(EPSG dataset coordinate operation method code 9616) 
 
As described in 2.4.1, a vertical offset allows calculation of coordinates in the target vertical coordinate 
reference system by adding a correction parameter A to the coordinate values of the point in the source 
system: 

X2 = X1 + A1>2 
where 

X2 = value in the forward target vertical coordinate reference system. 
X1 = value in the forward source vertical coordinate reference system. 
A1>2 is the offset to be applied for the transformation from CRS 1 to CRS 2. Its value for the forward 

calculation is the value of the origin of the source CRS 1 in the target CRS 2. 
 
For the reverse transformation from CRS 2 to CRS 1 the same formula is used but with the sign of the offset 
A1>2 reversed: 
 X1 = X2 + (–A1>2) 
 
Change of axis direction 
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The above formulas apply only when the positive direction of the axis of each CRS is the same. If there is a 
requirement to transform heights in the source CRS to depths in the target CRS or to transform depths in the 
source CRS to heights in the target CRS, the formulas must be modified to: 

for the forward transformation:       X2 = mX1 + A1>2 
for the reverse transformation:        X1 = m[X2 + (–A1>2)] 

where m is a direction modifier, 
m = +1 if the transformation involves no change of axis direction, i.e. height to height or depth to 

depth 
m = –1 if the transformation involves a change of axis direction, i.e. height to depth or depth to 

height 
 
These modified formulas remain valid whether or not there is a change in axis direction. 
 
Change of unit 
A further modification allows for source CRS axis, target CRS axis or offset to be in different units giving 
the general formulas: 

for the forward transformation:       X2 = {m * (X1 * U1) + (A1>2 * UA)} / U2 
for the reverse transformation:        X1 = {m * [(X2 * U2) + (–A1>2 * UA)]} / U1 
 

where U1 U2 and UA are unit conversion ratios for the two systems and the offset value respectively. U = 
[(factor b) / (factor c)] from the EPSG Dataset Unit of Measure table, populated with respect to the linear 
base unit, metre. U has a value of 0.3048 for the international foot. 
 
Example: 
For coordinate transformation: KOC CD height to KOC WD depth (ft) (1), code 5453: 
 

Transformation Parameter: Vertical Offset      A1>2  = 15.55 ft 
 
Source CRS axis direction is 'up' and Target CRS axis direction is 'down', hence        m = –1 
 
Offset unit = "foot" for which (from UoM table) b = 0.3048 and c = 1, then      UA = b/c = 0.3048 
Source CRS (KOC CD height) coordinate axis unit = "metre", b = 1, c = 1, then        Us = 1 
Target CRS (KOC WD depth) coordinate axis unit = "foot", b = 0.3048, c = 1, then   Ut = 0.3048 

 
Consider a point having a gravity-related height HCD in the KOC Construction Datum height system of 2.55 
m. Its value in the KOC Well Datum depth (ft) system is 
 DWD = { –1 * (2.55 * 1) + (15.55 * 3048)} / 0.3048 
                      =  7.18 ft 
 
For the reverse calculation to transform the Well Datum depth of 7.18 ft to Construction Datum height: 
 HCD =  { –1 * [(7.18 * 0.3048) + (–(15.55) * 0.3048)]} / 1 
                      =  2.55 m 
 
 
2.4.2.2 Vertical Offset by Interpolation of Gridded Data 
 
The relationship between some gravity-related coordinate reference systems is available through gridded 
data sets of offsets (sometimes called height differences). The vertical offset at a point is first interpolated 
within the grid of values. 
 
For the purposes of interpolation, horizontal coordinates of the point are required. However the 
transformation remains 1-dimensional. Although the providers of some gridded data sets suggest a particular 
interpolation method within the grid, generally the density of grid nodes should be such that any reasonable 
grid interpolation method will give the same offset value within an appropriately small tolerance.  Bi-linear 
interpolation is the most usual grid interpolation mechanism. The EPSG dataset differentiates methods by the 
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format of the gridded data file. The grid file format is given in documentation available from the information 
source. An example is Vertcon (EPSG dataset coordinate operation method code 9658) which is used by the 
US National Geodetic Survey for transformation between the NGVD29 and NAVD88 gravity-related height 
systems. Because the difference in NAD27 and NAD83 horizontal coordinate values of a point is 
insignificant in comparison to the rate of change of height offset, interpolation within the Vertcon gridded 
data file may be made in either NAD27 or NAD83 horizontal systems. 
 
Once the vertical offset value has been derived from the grid it is applied through the formulas given in the 
previous section. 
 
 
2.4.2.3 Vertical Offset and Slope 
(EPSG dataset coordinate operation method code 9657) 
 
In Europe, national vertical systems are related to the pan-European vertical system through three 
transformation parameters and the formula: 
 
X2 = m * X1 + {A1>2 + [Iϕ1>2  * ρO * (ϕ – ϕO)] + [Iλ1>2  * νO * (λ – λO) * cosϕ]}where 

 
X2 = value in the target vertical coordinate reference system. 
X1 = value in the source vertical coordinate reference system. 
m indicates a direction change of the CRS  axis:  

m = +1 when no direction change takes place (height to height or depth to depth), 
m = –1 in case of a direction change (height to depth or depth to height). 

A1>2 is the offset to be applied for the transformation from CRS 1 to CRS 2. Its value is the value of 
the origin of the source CRS 1 in the target CRS 2. 

Iϕ1>2 is the value in radians of the slope parameter in the latitude domain, i.e. in the plane of the 
meridian, derived at an evaluation point with coordinates of ϕO , λO. When Iϕ is positive then to the north of 
the evaluation point latitude ϕO the source and target CRS surfaces converge. 

Iλ1>2 is the value in radians of the slope parameter in the longitude domain, i.e. perpendicular to the 
plane of the meridian. When Iλ is positive then to the east of the evaluation point longitude λO the CRS 
surfaces converge. 

ρO is the radius of curvature of the meridian at latitude ϕO, 
   where ρO = a(1 – e2)/(1 – e2sin2ϕO)3/2 

νO is the radius of curvature on the prime vertical (i.e. perpendicular to the meridian) at latitude ϕO,  
  where νO = a /(1 – e2sin2ϕ O)1/2 

ϕ , λ are the horizontal coordinates of the point in the ETRS89 coordinate reference system, in 
radians. 

ϕO , λO are the coordinates of the evaluation point in the ETRS89 coordinate reference system, in 
radians. 
 
The horizontal location of the point must always be given in ETRS89 terms. Care is required where 
compound coordinate reference systems are in use: if the horizontal coordinates of the point are known in the 
local CRS they must first be transformed to ETRS89 values.  
 
Reversibility 
Similarly to the Vertical Offset method described in previous sections above, the Vertical Offset and Slope 
method is reversible using a slightly different formula to the forward formula and in which the signs of the 
parameters A, Iϕ and Iλ from the forward transformation are reversed in the reverse transformation: 

X1 = m * {X2 + –A1>2 + [–Iϕ1>2  * ρO * (ϕ – ϕO)] + [–Iλ1>2  * νO * (λ – λO) * cosϕ]} 
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Example: 
For coordinate transformation LN02 height to EVRF2000 height (1) 
 

Ordinate 1 of evaluation point: ϕ S0 = 46°55'N = 0.818850307 rad 
Ordinate 2 of evaluation point: λS0 =   8°11'E (of Greenwich) = 0.142826110 rad 
Transformation Parameters: A = –0.245 m   
 Iϕ = –0.210" = -0.000001018 rad 
 Iλ = –0.032" = -0.000000155 rad 
Source axis direction is "up", target axis direction is "up", m = +1 

 
Consider a point having a gravity-related height in the LN02 system (Hs) of 473.0m and with horizontal 
coordinates in the ETRS89 geographic coordinate reference system of: 

Latitude ϕETRS89 = 47°20'00.00"N = 0.826122513 rad 
Longitude λETRS89 =   9°40'00.00"E = 0.168715161 rad 

ETRS89 uses the GRS1980 ellipsoid for which a = 6378137 m and 1/f = 298.25722221 
 

Then                                                   ρO = 6369526.88 m   
Iϕ term = –0.047 m   

νO = 6389555.64 m   
Iλ term = –0.017 m   

   
whence  EVRF2000 height X2 = HEVRF = +1 * 473.0 +(–0.245) + (–0.047) + (–0.017) 

 = 472.69 m.   
 
For the reverse transformaton from EVRF2000 height of 472.69 m to LN02 height: 

X1 = HLN02 = +1 * {472.69 + [–(–0.245)] + [–(–0.047)] + [–(–0.017)]} 
 = 473.00 m.   

 
 
2.4.3 Transformations between Geocentric Coordinate Reference Systems 
 
The methods in this section operate in the geocentric coordinate domain. However they are most frequently 
used as the middle part of a transformation of coordinates from one geographic coordinate reference system 
into another forming a concatenated operation of: 

[(geographic to geocentric) + (geocentric to geocentric) + (geocentric to geographic)] 
 
See section 2.4.4.1 below for a fuller description of these concatenated operations and Guidance Note 7 part 
1 for a general discussion of implicit concatenated operations created by application software.  
 
The formulae given in the remainder of this section are for the transformation in the geocentric coordinate 
domain. 
  
2.4.3.1 Geocentric Translations (geocentric domain) 
(EPSG dataset coordinate operation method code 1031) 
 
If we assume that the axes of the ellipsoids are parallel, that the prime meridian is Greenwich, and that there 
is no scale difference between  the source and target coordinate reference system, then geocentric coordinate 
reference systems may be related to each other through three translations (colloquially known as shifts) dX, 
dY, dZ in the sense from source geocentric coordinate reference system to target geocentric coordinate 
reference system. They may then be applied as 

Xt = Xs + dX 
Yt = Ys + dY 
Zt = Zs + dZ 
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Example: 
Consider a North Sea point with coordinates derived by GPS satellite in the WGS84 geocentric coordinate 
reference system, with coordinates of: 

Xs = 3771 793.97 m 
Ys =   140 253.34 m 
Zs = 5124 304.35 m 

 
whose coordinates are required in terms of the ED50 coordinate reference system which takes the 
International 1924 ellipsoid. The three parameter geocentric translations method's parameter values from 
WGS84 to ED50 for this North Sea area are given as dX = +84.87m, dY = +96.49m, dZ = +116.95m.  
 
Applying the quoted geocentric translations to these, we obtain new geocentric values now related to ED50: 
 

Xt = 3771 793.97 + 84.87 = 3771 878.84 m 
Yt = 140 253.34 + 96.49 = 140 349.83 m 
Zt = 5124 304.35 + 116.95 = 5124 421.30 m 

 
 
2.4.3.2 Helmert 7-parameter transformations 
 
2.4.3.2.1 Position Vector transformation (geocentric domain) 
(EPSG dataset coordinate operation method code 1033) 
 
It is rare for the condition assumed in the geocentric translation method above – that the axes of source and 
target systems are exactly parallel and the two systems have an identical scale – is true. Further parameters to 
account for rotation and scale differences may be introduced. This is usually described as a simplified 7-
parameter Helmert transformation, expressed in matrix form in what is known as the "Bursa-Wolf" formula: 
 
⎛ XT ⎞    ⎛ 1 –RZ +RY ⎞  ⎛ XS  ⎞  ⎛ dX ⎞ 
⎜ YT ⎟  = M * ⎜ +RZ 1 –RX ⎟ * ⎜ YS ⎟ + ⎜ dY ⎟ 
⎝ ZT ⎠    ⎝ –RY +RX 1 ⎠  ⎝ ZS ⎠  ⎝ dZ ⎠ 
 
The parameters are commonly referred to defining the transformation "from source coordinate reference 
system to target coordinate reference system", whereby (XS, YS, ZS) are the coordinates of the point in the 
source geocentric coordinate reference system and (XT, YT, ZT) are the coordinates of the point in the target 
geocentric coordinate reference system.  But that does not define the parameters uniquely; neither is the 
definition of the parameters implied in the formula, as is often believed.  However, the following definition, 
which is consistent with the “Position Vector Transformation” convention (EPSG dataset coordinate 
operation method code 9606), is common E&P survey practice, used by the International Association of 
Geodesy (IAG) and recommended by ISO 19111:  
 
(dX, dY, dZ)   :Translation vector, to be added to the point's position vector in the source coordinate 
reference system in order to transform from source system to target system; also: the coordinates of the 
origin of the source coordinate reference system in the target coordinate reference system. 
 
(RX, RY, RZ)   :Rotations to be applied to the point's vector.  The sign convention is such that a positive 
rotation about an axis is defined as a clockwise rotation of the position vector when viewed from the origin 
of the Cartesian coordinate reference system in the positive direction of that axis; e.g. a positive rotation 
about the Z-axis only from source system to target system will result in a larger longitude value for the point 
in the target system.  Although rotation angles may be quoted in any angular unit of measure, the formula as 
given here requires the angles to be provided in radians. 
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M                  : The scale correction to be made to the position vector in the source coordinate reference 
system in order to obtain the correct scale in the target coordinate reference system. M = (1 + dS*10-6), 
where dS is the scale correction expressed in parts per million.   
 
Example: 
Transformation from WGS 72 to WGS 84 (EPSG dataset transformation code 1238).  Transformation 
parameter values: 

dX = 0.000 m   
dY = 0.000 m   
dZ = +4.5 m   
RX = 0.000 sec   
RY = 0.000 sec   
RZ = +0.554 sec = 0.000002685868 radians 
dS = +0.219 ppm   

 
Input point coordinate system: WGS 72 (Cartesian geocentric coordinates): 

XS = 3 657 660.66 m 
YS =    255 768.55 m 
ZS = 5 201 382.11 m 

 
Application of the 7 parameter Position Vector Transformation results in: 

XT = 3 657 660.78 m 
YT =    255 778.43 m 
ZT = 5 201 387.75 m 

on the WGS 84 geocentric coordinate reference system. 
 
Reversibility 
The Helmert 7-parameter transformations is an approximation formula that is valid only when the 
transformation parameters are small compared to the magnitude of the geocentric coordinates.  Under this 
condition the transformation is considered to be reversible for practical purposes. 
 
 
2.4.3.2.2 Coordinate Frame Rotation (geocentric domain) 
(EPSG dataset coordinate operation method code 1032) 
 
Although being common practice particularly in the European E&P industry, the Position Vector 
Transformation sign convention is not universally accepted.  A variation on this formula is also used, 
particularly in the USA E&P industry.  That formula is based on the same definition of translation and scale 
parameters, but a different definition of the rotation parameters.  The associated convention is known as the 
"Coordinate Frame Rotation" convention.  
The formula is: 
 
⎛ XT ⎞    ⎛ 1 +RZ –RY ⎞  ⎛ XS  ⎞  ⎛ dX ⎞ 
⎜ YT ⎟  = M * ⎜ –RZ 1 +RX ⎟ * ⎜ YS ⎟ + ⎜ dY ⎟ 
⎝ ZT ⎠    ⎝ +RY –RX 1 ⎠  ⎝ ZS ⎠  ⎝ dZ ⎠ 
 
and the parameters are defined as: 
 
(dX, dY, dZ)   : Translation vector, to be added to the point's position vector in the source coordinate 
reference system in order to transform from source coordinate reference system to target coordinate 
reference system; also: the coordinates of the origin of source coordinate reference system in the target 
frame. 
 
(RX, RY, RZ)   : Rotations to be applied to the coordinate reference frame.  The sign convention is such that a 
positive rotation of the frame about an axis is defined as a clockwise rotation of the coordinate reference 
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frame when viewed from the origin of the Cartesian coordinate reference system in the positive direction of 
that axis, that is a positive rotation about the Z-axis only from source coordinate reference system to target 
coordinate reference system will result in a smaller longitude value for the point in the target coordinate 
reference system. Although rotation angles may be quoted in any angular unit of measure, the formula as 
given here requires the angles to be provided in radians. 
 
M                  : The scale factor to be applied to the position vector in the source coordinate reference system  
in order to obtain the correct scale of the target coordinate reference system. M = (1+dS*10-6), where dS is 
the scale correction expressed in parts per million. 
 
In the absence of rotations the two formulas are identical; the difference is solely in the rotations. The name 
of the second method reflects this. 
 
Note that the same rotation that is defined as positive in the Position Vector method is consequently negative 
in the Coordinate Frame method and vice versa.  It is therefore crucial that the convention underlying the 
definition of the rotation parameters is clearly understood and is communicated when exchanging 
transformation parameter values, so that the parameter values may be associated with the correct coordinate 
transformation method (algorithm). 
 
The same example as for the Position Vector Transformation can be calculated, however the following 
transformation parameters have to be applied to achieve the same input and output in terms of coordinate 
values: 
 
Transformation parameters Coordinate Frame Rotation convention: 

dX = 0.000 m   
dY = 0.000 m   
dZ = +4.5 m   
RX = –0.000 sec   
RY = –0.000 sec   
RZ = –0.554 sec = –0.000002685868 radians 
dS = +0.219 ppm   

 
Please note that only the rotation has changed sign as compared to the Position Vector Transformation. The 
Position Vector convention is used by IAG and recommended by ISO 19111. 
 
The comments on reversibility of the Position Vector method apply equally to the Coordinate Frame method. 
 
 
2.4.3.3 Molodensky-Badekas transformation (geocentric domain) 
(EPSG dataset coordinate operation method code 1034) 
 
To eliminate high correlation between the translations and rotations in the derivation of parameter values for 
the Helmert transformation methods discussed in the previous section, instead of the rotations being derived 
about the geocentric coordinate reference system origin they may be derived at a location within the points 
used in the determination. Three additional parameters, the coordinates of the rotation point, are then 
required, making 10 parameters in total. The formula is: 
 
⎛ XT ⎞     ⎛ 1 +RZ –RY ⎞  ⎛ XS  – XP  ⎞  ⎛ XP  ⎞  ⎛ dX ⎞ 
⎜ YT ⎜ = M* ⎜ –RZ 1 +RX ⎟ * ⎜ YS – YP ⎟ + ⎜ YP ⎟ + ⎜ dY ⎟ 
⎝ ZT ⎠   ⎝ +RY –RX 1 ⎠  ⎝ ZS – ZP ⎠  ⎝ ZP ⎠  ⎝ dZ ⎠ 
 
and the parameters are defined as: 
 



OGP Surveying and Positioning Guidance Note number 7, part 2 –  November2009 
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org. 

 

Page 112 of 120 

(dX, dY, dZ)   : Translation vector, to be added to the point's position vector in the source coordinate system 
in order to transform from source coordinate reference system to target coordinate reference system; also: the 
coordinates of the origin of source coordinate reference system in the target frame. 
 
(RX, RY, RZ)   : Rotations to be applied to the coordinate reference frame.  The sign convention is such that a 
positive rotation of the frame about an axis is defined as a clockwise rotation of the coordinate reference 
frame when viewed from the origin of the Cartesian coordinate system in the positive direction of that axis, 
that is a positive rotation about the Z-axis only from source coordinate reference system to target coordinate 
reference system will result in a smaller longitude value for the point in the target coordinate reference 
system. Although rotation angles may be quoted in any angular unit of measure, the formula as given here 
requires the angles to be provided in radians. 
 
(XP, YP, ZP)   : Coordinates of the point about which the coordinate reference frame is rotated, given in the 
source Cartesian coordinate reference system.  
 
M                  : The scale factor to be applied to the position vector in the source coordinate reference system  
in order to obtain the correct scale of the target coordinate reference system. M = (1+dS*10-6), where dS is 
the scale correction expressed in parts per million. 
 
The Coordinate Frame Rotation method discussed in the previous section is a specific case of the 
Molodensky-Badekas transformation in which the evaluation point is the origin of the geocentric coordinate 
system, at which geocentric coordinate values are zero. 
 
Example 
See section 2.4.4.1 below for an example. 
 
Reversibility 
The Molodensky-Badekas transformation strictly speaking is not reversible, i.e. in principle the same 
parameter values cannot be used to execute the reverse transformation. This is because the evaluation point 
coordinates are in the forward direction source coordinate reference system and the rotations have been 
derived about this point. They should not be applied about the point having the same coordinate values in the 
target coordinate reference system, as is required for the reverse transformation. However, in practical 
application there are exceptions when applied to the approximation of small differences in the geometry of a 
set of points in two different coordinate reference systems. The typical vector difference in coordinate values 
is in the order of 6*101 to 6*102 metres, whereas the evaluation point on or near the surface of the earth is 
6.3*106 metres from the origin of the coordinate systems at the Earth’s centre. This difference of four or five 
orders of magnitude allows the transformation in practice to be considered reversible. Note that in the reverse 
transformation, only the signs of the translation and rotation parameter values and scale are reversed; the 
coordinates of the evaluation point remain unchanged. 

 
 
2.4.4 Transformations between Geographic Coordinate Reference Systems  
 
2.4.4.1 Transformations using geocentric methods 
 
Transformation of coordinates from one geographic coordinate reference system into another is often carried 
out as a concatenation of the following operations: 
 

(geographic to geocentric)  +  (geocentric to geocentric)  +  (geocentric to geographic) 
 

See section 4.4 of Guidance Note 7 part 1 for a fuller description of the concatenation technique. 
 
The middle step of the concatenated transformation, from geocentric to geocentric, may be through any of 
the methods described in section 2.4.3 above: 3-parameter geocentric translations, 7-parameter Helmert or 
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Bursa-Wolf transformation or 10-parameter Molodensky-Badekas transformation. The geographic 3D 
to/from geocentric steps of the concatenated transformation are described in section 2.2.1 above. If involving 
geographic 2D coordinates, the techniques described in section 2.2.4 above (geographic 3D to/from 2D) may 
also be used as additional steps at each end of the concatenation. 
 
The concatenated geodetic transformations are: 
 
Geocentric Translations (geog2D domain), EPSG method code 9603 
 Step # Step Method Name EPSG Method Code GN7-2 section 
 1 Geographic 2D to Geographic 3D 9659 2.2.4 
 2 Geographic 3D to Geocentric 9602 2.2.1 
 3 Geocentric Translations (geocentric domain) 1031 2.4.3.1 
 4 Geocentric to Geographic 3D 9602 2.2.1 
 5 Geographic 3D to Geographic 2D 9659 2.2.4 
 
Geocentric Translations (geog3D domain), EPSG method code 1035 
 Step # Step Method Name EPSG Method Code GN7-2 section 
 1 Geographic 3D to Geocentric 9602 2.2.1 
 2 Geocentric Translations (geocentric domain) 1031 2.4.3.1 
 3 Geocentric to Geographic 3D 9602 2.2.1 
 
Position Vector transformation (geog2D domain), EPSG method code 9606 
 Step # Step Method Name EPSG Method Code GN7-2 section 
 1 Geographic 2D to Geographic 3D 9659 2.2.4 
 2 Geographic 3D to Geocentric 9602 2.2.1 
 3 Position Vector transformation (geocentric domain) 1033 2.4.3.2.1 
 4 Geocentric to Geographic 3D 9602 2.2.1 
 5 Geographic 3D to Geographic 2D 9659 2.2.4 
 
Position Vector transformation (geog3D domain), EPSG method code 1037 
 Step # Step Method Name EPSG Method Code GN7-2 section 
 1 Geographic 3D to Geocentric 9602 2.2.1 
 2 Position Vector transformation (geocentric domain) 1033 2.4.3.2.1 
 3 Geocentric to Geographic 3D 9602 2.2.1 
 
Coordinate Frame Rotation (geog2D domain), EPSG method code 9607 
 Step # Step Method Name EPSG Method Code GN7-2 section 
 1 Geographic 2D to Geographic 3D 9659 2.2.4 
 2 Geographic 3D to Geocentric 9602 2.2.1 
 3 Coordinate Frame Rotation (geocentric domain) 1032 2.4.3.2.2 
 4 Geocentric to Geographic 3D 9602 2.2.1 
 5 Geographic 3D to Geographic 2D 9659 2.2.4 
 
Coordinate Frame Rotation (geog3D domain), EPSG method code 1038 
 Step # Step Method Name EPSG Method Code GN7-2 section 
 1 Geographic 3D to Geocentric 9602 2.2.1 
 2 Coordinate Frame Rotation (geocentric domain) 1032 2.4.3.2.2 
 3 Geocentric to Geographic 3D 9602 2.2.1 
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Molodensky-Badekas (geog2D domain), EPSG method code 9636 
 Step # Step Method Name EPSG Method Code GN7-2 section 
 1 Geographic 2D to Geographic 3D 9659 2.2.4 
 2 Geographic 3D to Geocentric 9602 2.2.1 
 3 Molodensky-Badekas (geocentric domain) 1034 2.4.3.3 
 4 Geocentric to Geographic 3D 9602 2.2.1 
 5 Geographic 3D to Geographic 2D 9659 2.2.4 
 
Molodensky-Badekas (geog3D domain), EPSG method code 1039 
 Step # Step Method Name EPSG Method Code GN7-2 section 
 1 Geographic 3D to Geocentric 9602 2.2.1 
 2 Molodensky-Badekas (geocentric domain) 1034 2.4.3.3 
 3 Geocentric to Geographic 3D 9602 2.2.1 
 
 
Example 
Transformation from La Canoa to REGVEN between geographic 2D coordinate reference systems (EPSG 
dataset transformation code 1771).   
 
The ten Molodensky-Badekas transformation parameter values for this transformation are: 

dX = -270.933 m   
dY = +115.599 m   
dZ = -360.226 m   
RX = -5.266 sec = -0.000025530288 radians 
RY = -1.238 sec = -0.000006001993 radians 
RZ = +2.381 sec = +0.000011543414 radians 
dS = -5.109 ppm   
Ordinate 1 of evaluation point = 2464351.59 m   
Ordinate 2 of evaluation point = -5783466.61 m   
Ordinate 3 of evaluation point = 974809.81 m   

 
Ellipsoid Parameters for the source and target coordinate reference systems are are: 

CRS name Ellipsoid name Semi-major axis (a) Inverse flattening (1/f) 
La Canoa International 1924 6378388.0 metres 1/f = 297.0 
REGVEN WGS 84 6378137.0 metres 1/f = 298.2572236 

 
Input point coordinate system: La Canoa (geographic 2D) 

Latitude ϕS = 9°35'00.386"N 
Longitude λS = 66°04'48.091"W 

 
Step 1: Using the technique described in section 2.2.4 above, this is taken to be geographic 3D with an 
assumed ellipsoidal height hS  =  201.46 m 
 
Step 2: Using the geographic (3D) to geocentric conversion method given in section 2.2.1, these three 
coordinates convert to Cartesian geocentric coordinates: 

XS =  2 550 408.96 m 
YS = -5 749 912.26 m 
ZS =  1 054 891.11 m 
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Step 3: Application of the Molodensky-Badekas (geocentric domain) Transformation (section 2.4.3.3) results 
in: 

XT =  2 550 138.46 m 
YT = -5 749 799.87 m 
ZT =  1 054 530.82 m 

on the REGVEN geocentric coordinate reference system (CRS code 4962) 
 
Step 4: Using the reverse formulas for the geographic/geocentric conversion method given in section 2.2.1 
on the REGVEN geographic 3D coordinate reference system (CRS code 4963) this converts into: 

Latitude ϕT =   9°34'49.001"N 
Longitude λT = 66°04'54.705"W 
Ellipsoidal height hT = 180.51 m 

 
Step 5: Because the source coordinates were 2D, using method 2.2.4 the target system ellipsoidal height is 
dropped and the results treated as a geographic 2D coordinate reference system (CRS code 4189): 

Latitude ϕT =   9°34'49.001"N 
Longitude λT = 66°04'54.705"W 

 
 
2.4.4.1.1 France geocentric interpolation 
(EPSG dataset coordinate operation method code 9655) 
 
In France the national mapping agency (IGN) have promolgated a transformation between the classical 
geographic 2D coordinate reference system NTF and the modern 3-dimensional system RGF93 which uses 
geocentric translations interpolated from a grid file. The method is described in IGN document NTG-88. In 
summary: 
• The grid file nodes are given in RGF93 geographic 2D coordinates. 
• Within the grid file the sense of the parameter values is from NTF to RGF93. 
 
For NTF to RGF93 transformations an iteration to obtain coordinates in the appropriate system for 
interpolation within the grid is required. The steps are: 

• Convert NTF geographic 2D coordinates to geographic 3D by assuming a height and then to NTF 
geocentric coordinates. 

• Transform NTF geocentric coordinates to approximate RGF93 coordinates using an average value 
for all France (EPSG dataset coordinate operation code 1651):  

XNTF = XRGF93' -168 m 
YNTF = YRGF93' -60 m 
ZNTF = ZRGF93' +320 m 

• Convert the approximate RGF93 geocentric coordinates to approximate RGF93 geographic 
coordinates. 

• Using the approximate RGF93 geographic coordinates, interpolate within the grid file to obtain the 
three geocentric translations (dX, dY, dZ) applicable at the point. 

• Apply these geocentric translations to the NTF geocentric coordinates to obtain RGF93 geocentric 
coordinates: 

• Transform RGF93 geocentric coordinates to NTF geocentric coordinates, taking account of the sense 
of the parameter values. 

XRGF93 = XNTF + dX 
YRGF93 = YNTF + dY 
ZRGF93 = ZNTF + dZ 

• Convert RGF93 geocentric coordinates to RGF93 geographic 3D coordinates. Because the original 
input NTF coordinates were geographic 2D, the RGF93 ellipsoidal height is meaningless so it is 
dropped to give RGF93 geographic 3D coordinates. 

 
For RGF93 to NTF transformations the steps are: 
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• Using the RGF93 geographic coordinates, interpolate within the grid file to obtain the three 
geocentric translations (dX, dY, dZ) applicable at the point. 

• Convert RGF93 geographic coordinates to RGF93 geocentric coordinates. 
• Transform RGF93 geocentric coordinates to NTF geocentric coordinates, taking into account the 

sense of the parameter values:  
XNTF = XRGF93 + (- dX) 
YNTF = YRGF93 + (- dY) 
ZNTF = ZRGF93 + (- dZ) 

• Convert NTF geocentric coordinates to geographic 3D coordinates. 
• Drop the ellipsoid height to give NTF geographic 2D coordinates. 
 

 
2.4.4.2 Abridged Molodensky transformation 
(EPSG dataset coordinate operation method code 9605) 
 
As an alternative to the computation of the new latitude, longitude and ellipsoid height by concatenation of 
three operations (geographic 3D to geocentric + geocentric to geocentric + geocentric to geographic 3D), the 
changes in these coordinates may be derived directly as geographic coordinate offsets through formulas 
derived by Molodensky (EPSG dataset coordinate operation method code 9604, not detailed in this Guidance 
Note).  Abridged versions of these formulas, which quite satisfactory for most practical purposes, are as 
follows: 

ϕt = ϕs + dϕ 
λt = λs + dλ 
ht = hs + dh 

where 
  dϕ " =  (– dX sinϕ s cosλ s –  dY sinϕ s sinλ s + dZ cosϕ s + [a df  + f da ] sin2ϕ s) / (ρs sin1") 
 dλ " =   (– dX sinλ s + dY cosλ s) / (νs  cosϕ s sin 1") 
 dh   =     dX cosϕ s cosλ s + dY cosϕ s sinλ s + dZ sinϕ s + (a df  + f da) sin2ϕ s –  da 
 
and where dX, dY and dZ are the geocentric translation parameters, ρs and νs are the meridian and prime 
vertical radii of curvature at the given latitude ϕs on the first ellipsoid, da is the difference in the semi-major 
axes of the target and source ellipsoids and df is the difference in the flattening of the two ellipsoids: 
 ρs = a s (1 – e s

 2) / (1 – e s
 2sin2ϕs)3/2 

 νs = a s / (1 – e s
 2sin2ϕ s)1/2 

da = at –  as 
df = ft –  fs = 1/(1/ft) – 1/(1/f s). 

 
The formulas for dϕ and dλ indicate changes in ϕ and λ in arc-seconds. 
 
Example: 
For a North Sea point with coordinates derived by GPS satellite in the WGS84 geographic coordinate 
reference system, with coordinates of: 
           latitude ϕs                = 53°48'33.82"N,  
           longitude λs             =   2°07'46.38"E,  
    and ellipsoidal height hs =  73.0m,  
 
whose coordinates are required in terms of the ED50 geographic coordinate reference system which takes the 
International 1924 ellipsoid.  
 
The three geocentric translations parameter values from WGS 84 to ED50 for this North Sea area are given 
as dX = +84.87m, dY = +96.49m, dZ = +116.95m.  
Ellipsoid Parameters are: 

WGS 84 a = 6378137.0 metres  1/f = 298.2572236 
International 1924 a = 6378388.0 metres  1/f = 297.0 
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Then 

 
da = 6378388 – 6378137 = 251 

 df = 0.003367003 – 0.003352811 = 1.41927E-05 
whence 
 

dϕ = (-68.448-2.894+69.056+87.079)/30.917 = 2.743" 
dλ = (-3.154+96.423)/18.299 = 5.097" 
dh = 50.079+2.117+94.385+59.510-251.000 = – 44.909 m 

 
ED50 values on the International 1924 ellipsoid are then: 

 latitude ϕt = 53°48'36.563"N 
 longitude  λt = 2°07'51.477"E 
and ellipsoidal height ht = 28.091 m 

 
Because ED50 is a geographic 2D coordinate reference system the height is dropped to give: 

latitude ϕt = 53°48'36.56"N 
longitude  λt = 2°07'51.48"E 

 
For comparison, better values computed through the concatenation of the three operations (geographic to 
geocentric + geocentric to geocentric + geocentric to geographic) are: 

 latitude ϕt = 53°48'36.565"N 
 longitude  λt = 2°07'51.477"E 
and ellipsoidal height ht = 28.02 m 

 
 
2.4.4.3 Geographic Offsets 
 
This is the simplest of transformations between two geographic coordinate reference systems, but is normally 
used only for purposes where low accuracy can be tolerated. It is generally used for transformations in two 
dimensions, latitude and longitude, where: 

ϕt = ϕs + dϕ 
λt = λs + dλ 

(EPSG dataset coordinate operation method code 9619). 
 
In very rare circumstances, a transformation in three dimensions additionally including ellipsoidal height 
may be encountered: 

ϕt = ϕs + dϕ 
λt = λs + dλ 
ht = hs + dh 

(EPSG coordinate operation method code 9660) 
 
This should not be confused with the Geographic2D with Height Offsets method used in Japan, where the 
height difference is between the ellipsoidal height component of a 3D geographic coordinate reference 
system and a gravity-related height system. This is discussed in section 2.4.5 below. 
 
Example: 
A position with coordinates of 38°08'36.565"N, 23°48'16.235"E referenced to the old Greek geographic 2D 
coordinate reference system (EPSG datset CRS code 4120) is to be transformed to the newer GGRS87 
system (EPSG dataset CRS code 4121). Transformation parameters from Greek to GGRS87 are: 

dϕ = -5.86" 
dλ = +0.28" 
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Then ϕGGRS87 = 38°08'36.565"N + (-5.86") = 38°08'30.705"N 
and λGGRS87 = 23°48'16.235"E + 0.28" = 23°48'16.515"E 

 
For the reverse transformation for the same point,  

ϕGREEK = 38°08'30.705"N + 5.86" = 38°08'36.565"N 
λGREEK = 23°48'16.515"E + (-0.28") = 23°48'16.235"E 

 
 
2.4.4.4 Geographic Offset by Interpolation of Gridded Data 
 
The relationship between some geographic 2D coordinate reference systems is available through gridded 
data sets of latitude and longitude offsets. This family of methods includes: 

 NADCON (EPSG dataset coordinate operation method code 9613) which is used by the US National 
Geodetic Survey for transformation between US systems;  

NTv2 (EPSG dataset coordinate operation method code 9615) which originated in the national 
mapping agency of Canada and was subsequently adopted in Australia, New Zealand and then several other 
countries; and  

OSTN (EPSG dataset coordinate operation method code 9633) used in Great Britain. 
 
The offsets at a point are derived by interpolation within the gridded data. In some methods, separate grid 
files are given for latitude and longitude offsets whilst in other methods the offsets for both latitude and 
longitude are given within a single grid file. The EPSG dataset differentiates methods by the format of the 
gridded data file(s). The grid file format is given in documentation available from the information source. 
Although the authors of some data sets suggest a particular interpolation method within the grid(s), generally 
the density of grid nodes should be such that any reasonable grid interpolation method will give the same 
offset value.  Bi-linear interpolation is the most usual grid interpolation mechanism. The interpolated value 
of the offset A is then added to the source CRS coordinate value to give the coordinates in the target CRS. 
 
Reversibility 
The coordinate reference system for the coordinates of the grid nodes will be given either in the file itself or 
in accompanying documentation. This will normally be the source coordinate reference system for the 
forward transformation. Then in forward transformations the offset is obtained through straightforward 
interpolation of the grid file. But for the reverse transformation the first grid interpolation entry will be the 
value of the point in the second coordinate reference system, the offsets are interpolated and applied with 
sign reversed, and the result used in further iterations of interpolation and application of offset until the 
difference between results from successive iterations is insignificant. 
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2.4.5 Geoid and Height Correction Models  
 
2.4.5.1 Geographic3D to GravityRelatedHeight 
Although superficially involving a change of dimension from three to one, this transformation method is 
actually one-dimensional. The transformation applies an offset to the ellipsoidal height component of a 
geographic 3D coordinate reference system with the result being a gravity-related height in a vertical 
coordinate reference system. However the ellipsoidal height component of a geographic 3D coordinate 
reference system cannot exist without the horizontal components, i.e. it cannot exist as a one-dimensional 
coordinate reference system.  
 
Geodetic science distinguishes between geoid-ellipsoid separation models and height correction models. Geoid 
separation models give the height difference between the ellipsoid and the geoid surfaces. Height correction models 
give height difference between ellipsoidal a particular vertical datum surface. Because a vertical datum is a realisation 
of the geoid and includes measurement errors and various constraints, a vertical datum surface will not exactly coincide 
with the geoid surface. The mathematics of the application of these models is identical and for the purposes of the 
EPSG dataset they are considered to be one method. 
 
The correction value ζ 6 is interpolated from a grid of height differences and the interpolation requires the 
latitude and longitude components of the geographic 3D coordinate reference system as arguments. 
 
If h is the ellipsoidal height (height of point above the ellipsoid, positive if up) in the geographic 3D CRS 
and H is the gravity-related height in a vertical CRS, then 
 

H = h – ζ 
 
Note that unlike the general convention adopted for offsets described in 2.4.1, geoid separation and height 
correction models conventionally use the true mathematical convention for sign. 
 
The EPSG dataset differentiates between the formats of the gridded height files and distinguishes separate 
coordinate operation methods for each file format. The coordinate operation method may also define the 
interpolation technique to be used. However the density of grid nodes is usually sufficient for any reasonable 
interpolation technique to be used, with bi-linear interpolation usually being applied. 
 
Reversibility 
The reverse transformation, from gravity-related height in the vertical coordinate reference system to the 
ellipsoidal height component of the geographic3D coordinate reference system, requires that a horizontal 
position be associated with the gravity-related height. This is indeterminate unless a compound coordinate 
reference system is involved (see the Geographic3D to Geographic2D+GravityRelatedHeight method 
described below). Geographic3D to GravityRelatedHeight methods therefore are not reversible. 
 
 

120120                                                        
6 Geodetic science recognises several types of gravity-related height, differentiated by assumptions made about the 
gravitational field. A discussion of these types is beyond the scope of this document. In this document the symbol ζ is 
used to indicate the correction to be applied to the ellipsoid height.  



OGP Surveying and Positioning Guidance Note number 7, part 2 –  November2009 
To facilitate improvement, this document is subject to revision. The current version is available at www.epsg.org. 

 

Page 120 of 120 

2.4.5.2 Geographic3D to Geographic2D+GravityRelatedHeight  
 
This method transforms coordinates between a geographic 3D coordinate reference system and a compound 
coordinate reference system consisting of separate geographic 2D and vertical coordinate reference systems. 
Separate operations are made between the horizontal and vertical components. In its simplest form it 
combines a Geographic 3D to 2D conversion and a Geographic3D to GravityRelatedHeight transformation 
(see sections 2.2.2 and 2.4.5.1 above). However, complexities arise (a) for the forward transformation if the 
source 3D and target 2D geographic coordinate reference systems are based on different geodetic datums, or 
(b) in the reverse transformation of height from compound to geographic 3D.  
 
Horizontal component 
If the horizontal component of the compound coordinate reference system and the geographic 3D coordinate 
reference system are based on the same geodetic datum, this operation is simply the Geographic 3D to 2D 
conversion described in section 2.2.2 above except that for the reverse case (2D to 3D) no assumption is 
required for the ellipsoidal height as it will come from the operation for the vertical part. 
 
If the horizontal component of the compound coordinate reference system and the geographic 3D coordinate 
reference system are based on different geodetic datums then any of the geographic to geographic 
transformations discussed in section 2.4.4 above, including those using geocentric methods (sections 2.4.3 
and 2.4.4.1), may be used. 
 
Vertical component 
The forward transformation from geographic 3D to vertical component of the compound system uses the 
Geographic3D to GravityRelatedHeight method described in section 2.4.5.1 above. Then: 

H = h – ζ 
where, as before, h is the ellipsoidal height (height of point above the ellipsoid, positive if up) in the 
geographic 3D CRS, H is the gravity-related height in the vertical CRS part of the compound CRS and ζ  is 
the correction from ellipsoidal height to gravity-related height from the gridded data. 
 
The reverse transformation, from vertical component of the compound system to geographic 3D system, 
requires interpolation within the grid of height differences. However the latitude and longitude arguments for 
this interpolation must be in the geographic 3D coordinate reference system, as the nodes for the gridded 
data will be in this system. Therefore the reverse operation on the horizontal component of the compound 
system must be executed before the reverse vertical transformation can be made. Then: 

h = H – –ζ 
 
 
2.4.5.3 Geographic2D with Height Offsets 
(EPSG dataset coordinate operation method code 9618) 
 
This method used in Japan is a simplified form of the general Geographic3D to 
Geographic2D+GravityRelatedHeight method described above. It combines the geographic 2D offset 
method described in section 2.4.4.3 above with an ellipsoidal height to gravity-related height value A applied 
as a vertical offset. 

ϕWGS84 = ϕTokyo + dϕ 
λWGS84 = λTokyo + dλ 
hWGS84 = HJSLD + A 

 
 
 
OGP, 1995-2009. 
(OGP contact details, disclaimer and copyright notice to be inserted here). 


